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INVARIANT AFFINOR METRIC STRUCTURES ON LIE GROUPS

E. S. Kornev UDC 514.765

Abstract: We introduce the class of special metric structures on Lie groups which are connected with
the radical of a fixed 1-form on a Lie group. These structures are called affinor metric structures. We
introduce and study some special classes of invariant affinor metric structures and generalize many
results of the theory of contact metric structures on Lie groups.
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Introduction

We introduce and study some special types of metrics on Lie groups that are connected with a given
1-form and its radical. These metric structures are called affinor metric structures. The simplest partial
case of affinor metric structures are contact metric structures [1]. Many of the notions and results of the
article have analogs in the theory of contact structures. But most of the results of Section 5 cannot be
applied to contact metric structures.
In Section 1, we study the properties of the radical of 1-forms on Lie groups. In Sections 2–4, we

introduce and study various metric structures connected with the radical of a given 1-form. In Section 5,
we consider the connection between the affinor metric structures and the complex structures on Lie groups.
In this article, most of the results previously known only for 1-forms with one-dimensional radical

(contact form) are proved for the 1-forms with radical of arbitrary dimension. We also obtain some
topological and geometric facts that describe the structure of Lie algebras and Lie groups with affinor
structure.
By an affinor metric structure we mean a triple (α,Φ, β), where α is a 1-form with nontrivial radical,

β is a symmetric 2-form whose restriction to the radical of α is a Riemannian metric and Φ is a field
of linear operators on the Lie group making the form dα into a Riemannian metric on the subspace
complementary to the radical of α. The form β is called the radical metric and studied separately in
Section 2. The field Φ is called the affinor and is a key notion of the theory of affinor metric structures.

§ 1. The Radical of Linear Forms
Suppose that G is a connected Lie group of dimension n, while g is its Lie algebra, α is a left-invariant

1-form on G, and β is a left-invariant 2-form on G. Unless otherwise specified, we assume all forms on
Lie groups left-invariant throughout the sequel.

Definition 1.1. By the radical of a 2-form β we mean the maximal subset radβ ⊂ g such that
β(X,Y ) = 0 for all X ∈ radβ and Y ∈ g. By the radical of a 1-form α we mean the radical of the
exterior derivative dα of α.

From the definition it is immediate that the radical of a 1-form on a Lie group G is a vector space,
always including the center of the Lie algebra of G. The 2-forms with zero radical are called symplectic
and studied in [2].

Example 1. Let G be a Lie group of dimension 2n + 1 and let α be a left-invariant 1-form on G
having the property (dα)n ∧ α �= 0. These are called contact forms and studied in [3]. In [4] it is proved
that every left-invariant contact structure has one-dimensional radical.
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Example 2. Let H be an odd-dimensional Lie group with left-invariant contact form α̂ and let A
be a commutative Lie group of odd dimension. Consider the group G = H × A. Extend the form α̂ to
the left-invariant form α on G by putting α ≡ 0 on A. The group G is even-dimensional, and so is the
radical α, since α is formed by the direct sum of the Lie algebra of A and the one-dimensional radical
of α̂.

Proposition 1.2. Let α be a left-invariant 1-form on a Lie group G. Then radα is a subalgebra of
the Lie algebra of G.

Proof. Let g be the Lie algebra of G. Given X and Y in radα and Z in g, we have

dα([X,Y ], Z) = −(1/2)α([[X,Y ], Z]).
Using Jacobi’s identity, we infer

α([[X,Y ], Z]) = −α([[Y, Z], X])− α([[Z,X], Y ]) = 2dα([Y, Z], X) + 2dα([Z,X], Y ).
By the definition of the radical of a 1-form, the right-hand side of the last equality is zero. Hence,
dα([X,Y ], Z) = 0; consequently, [X,Y ] ∈ radα.
Denote by r the radical of α and by R, the connected subgroup generated by the subalgebra r. We

call R the radical subgroup and suppose that the subgroup R acts at the 1-form α by the rule Ad∗Rα, i.e.,
Ad∗r α(X) = α(AdrX) for all r ∈ R and X ∈ g.
Proposition 1.3. The radical subgroup of a left-invariant 1-form α on a Lie group G is closed and

coincides with the connected component of the unity of the isotropy subgroup of the form α with respect
to the relatively adjoint action of G.

Proof. Let H be the isotropy subgroup of α and let h be its Lie algebra. If a vector X belongs to h
then the integral curve h(t) issuing from the unity of G in the direction of X lies in H. Hence,

d

dt

∣
∣
∣
t=0
Ad∗h(t) α(Y ) = α([X,Y ]) = 0 for all Y ∈ g,

i.e., X ∈ r.
Conversely, if X belongs to r and r(t) is the integral curve issuing from the unity of G in the direction

of X then
d

dt
Ad∗r(t) α(Y ) = α(Adr(t)[X,Y ]) = α([Adr(t)X,Adr(t) Y ]) = α([X,Adr(t) Y ]) = 0

for all Y ∈ g, i.e., the curve r(t) lies in H, and, hence, X ∈ h. Thus, h = r.
Since h = r, the connected component of the unity of H is generated by the subalgebra r and, hence,

coincides with R, and the subgroup R is closed because the connected component of the unity of every
Lie group is always closed.

Lemma 1.4. The dimension of the radical of every left-invariant 1-form on a Lie group of odd
dimension is greater than or equal to 1.

Proof. Suppose that G is a Lie group of dimension 2n + 1, g is the Lie algebra of G, and α is
a left-invariant 1-form on G. It is known that, in a fixed basis for the Lie algebra, the exterior 2-form
dα is represented by a skew-symmetric matrix of order 2n + 1. Since the characteristic polynomial of
the matrix has odd degree, it has at least one real root. Consequently, the matrix of dα has at least one
eigenvector with a real eigenvalue λ. Introduce some new basis of the Lie algebra g, e1, . . . , e2n+1 so that
e2n+1 be an eigenvector with eigenvalue λ. In this basis the matrix of dα takes the form

[
a11 . . . a1,2n 0
. . . . . . . . . . . . . . . . . . . . . . 0
a2n+1,1 . . . a2n+1,2n λ

]

.

The skew-symmetry of this matrix implies that λ = 0 and a2n+1,k = 0 for all k = 1, . . . , 2n. Consequently,
e2n+1 generates a one-dimensional subspace in the radical of α.
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Theorem 1.5. Let α be a left-invariant nonclosed 1-form on a Lie group G of dimension n. If n
is even then the dimension of radα is also even and 0 ≤ dim(radα) ≤ n − 2, and if n is odd then the
dimension of radα is also odd and 1 ≤ dim(radα) ≤ n− 2.
Proof. Let g be the Lie group of G. Suppose that n is even. If α has a nontrivial radical on g then

choose a one-dimensional subspace V1 in the radical and denote byW1 the subspace complementary to V1
in g such that the restriction of α to W1 is not identically zero. Such a subspace may always be chosen
since a linear form cannot be identically zero on g \ V1. Furthermore, dα �≡ 0 on W1, since otherwise
dα ≡ 0 on g, which contradicts the nonclosedness of α.
Since W1 has odd dimension, by Lemma 1.4 it includes a one-dimensional subspace V2 in the radical

of α. Clearly, the two-dimensional subspace {V1, V2} is in the radical of α. Denote by W2 the subspace
complementary to V2 in W1 such that the restriction of α to W2 is not identically zero. If α is nonde-
generate on W2 then the assertion is proved. If W2 includes a one-dimensional subspace of radα then
repeat the previous step. Continuing by induction, we infer that the dimension of radα is even. Similar
arguments in the case when n is odd show that the dimension radα is odd in this case.

If dim(radα) = n − 1 then from Definition 1.1 it follows that dα ≡ 0 on G. This contradicts the
nonclosedness of α. Thus, the proof of the theorem is complete.

Remark 1.6. In [1] it was proved that insoluble unimodular Lie groups do not admit nondegenerate
closed exterior 2-forms. Therefore, on an insoluble unimodular Lie group of even dimension, the inequality

1 ≤ dim(radα) ≤ n− 1

holds for every 1-form α. It also follows from Theorem 1.5 that, on a two-dimensional Lie group, the
radical of every 1-form is trivial; i.e., either it is zero or coincides with the Lie algebra.

The following result enables us to determine the dimension of the radical of a 1-form on semisimple
Lie groups:

Theorem 1.7. Let G be a semisimple Lie group and let α be a left-invariant 1-form on G. Then
the radical of α coincides with the greatest subspace V such that, for every X in V , the operator adX is
skew-symmetric with respect to the 2-form dα.

Proof. If X ∈ radα then, for all Y and Z in g, we have

6 d2α(X,Y, Z) = −dα([X,Y ], Z) + dα([X,Z], Y )− dα([Y, Z], X)
= dα(adX Z, Y ) + dα(Z, adX Y ) = 0,

i.e., X ∈ V .
Conversely, if X ∈ V then dα(adX Y, Z) = −dα(Y, adX Z) for all Y and Z in g, whence

6 d2α(X,Y, Z) = dα(X, [Y, Z]) = 0.

Since, for semisimple Lie groups, the first derived ideal coincides with the entire Lie algebra, each vector
field in g may be represented as the Lie bracket of two other vector fields. Thus, dα(X,Y ) = 0 for all Y
in g, and X ∈ radα.
Theorem 1.7 gives a simple algorithm for calculating the dimension of the radical of a 1-form α on

a semisimple Lie group G. If we fix a basis E1, . . . , En, n = dimG, of the Lie algebra of G then the
dimension of the radical of α is equal to the number of the basis vectors for which the operators adEi are
skew-symmetric in dα.

If we assume that the radical subgroup R acts on G by right multiplication and is a normal subgroup

in G then we may consider the fibration G
π→ G/R with fiber R and the natural projection π.
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Theorem 1.8. Let G be a connected simply connected Lie group and let R be the normal radical

subgroup of a left-invariant 1-form α on G. Then the fibration G
π→ G/R is trivial if and only if G is

isomorphic to the semidirect product G/R�R.

Proof. Denote G
π→ G/R by P . If P is trivial then there exists a homeomorphism between G and

G/R × R and so the group G/R � R is simply connected. The triviality of P implies that P admits
a global section Σ (see [5, Vol. 1, Chapter 2]).
Let Φ be a homomorphism from G/R into the group of automorphisms of the semigroup R of the

form
Φa(h) = Σ(a)hΣ(a)

−1, a ∈ G/R, h ∈ R.
Since R is a normal subgroup, Φa acts on R invariantly for every a ∈ G/R. This implies that the
radical r is an ideal in g and the Lie algebra g is isomorphic to the semidirect product of g/r and r. The
isomorphism of the Lie algebras induces the group isomorphism between G and G/R�R.
Conversely, if G and G/R�R are isomorphic then the isomorphism of these groups is, in particular,

a homeomorphism of the topological spaces G and G/R×R and so the fibration P is trivial.

§ 2. A Metric of the Radical
Suppose that G is a connected Lie group, α is a left-invariant 1-form on G, r is its radical, and R is

the radical subgroup.

Definition 2.1. By a metric of the radical r we mean a left-invariant symmetric nonnegative 2-form
β possessing the following properties:
(1) β is nondegenerate on r;
(2) β has radical of maximal dimension, i.e., the Lie algebra of G may be represented as the direct

sum of g = r⊕ radβ.
It can be seen from the definition that the restriction of β to r defines a Riemannian metric on r.

Example 1. Suppose that a group G has the form H × R, where H is a symplectic Lie group
with left-invariant symplectic structure Ω and R is a commutative Lie group. Let g0 be the standard
left-invariant Euclidean metric on G in some fixed basis of the Lie algebra g and let α be a left-invariant
1-form on G such that the restriction of dα to H coincides with Ω. Since dα is nondegenerate on H and
R is commutative, dα(X,Y ) = −(1/2)α([X,Y ]) = 0 for all X ∈ r and Y ∈ g, i.e., radα = r, and as the
metric of the radical we may take the form g0 ◦ dπ, where π is the projection of G onto R along H.
Example 2. Suppose that G is an insoluble Lie group, R is a maximal soluble subgroup in G

admitting a left-invariant exact symplectic structure Ω, and α is a left-invariant 1-form on G such that
the restriction of dα to R coincides with Ω. By Levi’s Theorem (for example, see [6]), G may be
represented as G = S �R, where S is a semisimple Lie group. If, for every X ∈ S, the image of the Lie
algebra g under the action of adX lies in the kernel of α then radα = s and β = −B, where B is the
Killing–Cartan form, defines a left-invariant metric of the radical on G.

Denote the radical of the metric of the radical β by D. It may be considered as a left-invariant
distribution on G. Definition 2.1 implies that g = D ⊕ r. Since r is a subalgebra, AdR acts on r
invariantly. If AdR acts invariantly on D then the Lie algebra of G is reducible in the sense of Nomizu.

Proposition 2.2. If the metric of the radical is AdR-invariant then the distribution D is invariant
under the relatively adjoint action of the radical subgroup.

Proof. Suppose that X ∈ D and Y ∈ g. If the metric of the radical β is AdR-invariant then, given
h ∈ R, we have

β(AdhX,Y ) = β(X,Adh−1 Y ) = 0,

i.e., AdhX ∈ D.
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Proposition 2.3. Let β be a left-invariant metric of the radical r on a Lie group G and letD = radβ.
If the radical subgroup R is a compact subgroup in G and the projection π of the Lie algebra g onto the
subalgebra r along D commutes with the adjoint action of the radical subgroup then the distribution D
is invariant under the adjoint action of R.

Proof. Applying the operation of averaging of the form β over R, we obtain an AdR-invariant
form β1. Since Adh ◦dπ = dπ ◦Adh for every h ∈ R and πX = 0 for every X in D, the form β2 = β1 ◦ dπ
is an AdR-invariant metric of the radical r with radical D. By Proposition 2.2, we see that D is invariant
under the adjoint action of R.

Remark 2.4. If the radical subgroup R is a maximal torus in G and the projection π : g �→ r
along the radical D of some left-invariant metric of the radical r commutes with the adjoint action of the
maximal torus then, since every torus is a commutative compact group, the distribution D is invariant
under the adjoint action of the maximal torus R.

Denote the fibration G
π→ G/R of Section 1 by P .

Theorem 2.5. Suppose that G is a connected Lie group, α is a left-invariant 1-form on G with
radical r, β is a left-invariant metric of the radical, D is the radical of the form β, the radical subgroup
R is a maximal torus in G, and the projection π : g �→ r along D commutes with the adjoint action of
the subgroup of the radical. Then

(1) the distributionD is invariant under the adjoint action of the radical subgroup and is a connection
of P ;

(2) the connection form of D is as follows:

ω(X) =

m∑

i=1

β(X,Ei)Ei,

where E1, . . . , Em is a fixed basis of the radical r orthonormal with respect to the metric β and m is the
dimension of r, X ∈ g;
(3) D is flat (i.e., has zero form of the curvature of the connection) if and only if D is involutive.

Proof. (1) By Remark 2.4, AdR acts on D invariantly. This implies that the distribution D is
bi-invariant under the adjoint action of R and, in particular, invariant under right translations by the
elements of the radical subgroup. Since it is differentiable and is the complement to the radical r, it
follows that D is a connection for P .

(2) Suppose that X =
∑m
i=1 xiEi ∈ r. We have

ω(X) =
m∑

i=1

xiω(Ei) =
m∑

i=1

xiEi = X.

Since a maximal torus is a commutative subgroup, for all h in R and Y in r, we will have Adh Y (e) =
Y (e) or dLhY (e) = dRhY (e), where e is the unity of G. Given h in R, we have

R∗hω(X(e)) =
m∑

i=1

β(dRhX(e), Ei(h))Ei(h)

=
m∑

i=1

β(AdhX(h), Ei(h))Adh−1 Ei(h) = Adh−1(ω(X(h)),

i.e., the form ω satisfies all axioms of a connection form.
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Show that ω does not depend on the choice of a basis. Let E′1, . . . , E′m be another orthonormal basis
for the radical and let A be the orthogonal transformation of this basis to a basis E1, . . . , Em. We have

ω(X) =
m∑

i=1

β(X,Ei)Ei =
m∑

i=1

∑

k,l

β
(

X, akiE
′
k

)

aliE
′
l

=
m∑

i=1

∑

k,l

aki a
l
iβ(X,E

′
k)E

′
l =

m∑

k=1

β(X,E′k)E
′
l = ω

′(X).

(3) Let Ω be the curvature form of D. Using the structural equation of [5, Chapter 2] and the
commutativity of the radical r, we infer

Ω(X,Y ) = (1/2)[ω(X), ω(Y )] + dω(X,Y ) = dω(X,Y ) = −ω([X,Y ])
for all X and Y in g.
Since the radical r is commutative, ω([X,Y ]) = 0 for all X and Y in r. The distribution D is the

kernel of the connection form ω and is invariant under AdR; therefore, [X,Y ] = adX Y ∈ D for all X ∈ D
and Y ∈ r, and so ω([X,Y ]) = 0. If D is involutive then ω([X,Y ]) = 0 for all X and Y in D. Thus,
Ω(X,Y ) = 0 for all X and Y in g.
Conversely, if Ω ≡ 0 and X,Y ∈ D then

ω([X,Y ]) = −Ω(X,Y ) = 0,
i.e., [X,Y ] ∈ D.
Remark 2.6. The assertions of Theorem 2.5 hold also in the following two cases:
(1) the radical subgroup R is commutative (not necessarily compact), and the radical metric is

AdR-invariant;
(2) the radical subgroup is an arbitrary subgroup in G and every vector field in g is AdR-invariant.

Proposition 2.7. Let α be a left-invariant nonclosed 1-form on a Lie group G and let D be the
radical of a left-invariant metric of the radical of α. If D is a subalgebra of the Lie algebra of G then D
cannot lie in the kernel of the form α.

Proof. If D is not a subalgebra in g then D is involutive and g = D ⊕ radα. If D ⊂ kerα then
we infer dα(X,Y ) = −(1/2)α([X,Y ]) = 0 for all X and Y in D. Thus, dα ≡ 0 on D, and hence dα ≡ 0
on g, which contradicts the nonclosedness of α.

Remark 2.8. If α is a left-invariant contact structure on a Lie group G then every left-invariant
metric of the radical of a form α is proportional to the 2-form α ⊗ α, and its radical coincides with the
kernel of the form α. Consequently, in the contact case, the distribution D cannot be a subalgebra.
Suppose that the distribution D is involutive and invariant under the adjoint action of the radical

subgroup. In this case D is a subalgebra in g, and the Lie algebra g is isomorphic to the semidirect
product of the subalgebra D and the radical r. Denote by H the connected subgroup generated by D.
It was proved in [7] that an isomorphism of Lie algebras implies a local isomorphism of the Lie groups.
Consequently, there exists a local isomorphism from G onto the semidirect product of the subgroups H
and R. This isomorphism defines a local homeomorphism of the topological spaces G and H ×R.
If we assume that the radical subgroup acts on G by right multiplication then we may introduce the

fibration G
π→ H with fiber R and projection π. Denote this fibration by L. If the radical subgroup R is

commutative then D is a flat connection of L with connection form ω of item (2) of Theorem 2.5. Note
that, in the fibration L, we require no longer that the radical subgroup be commutative and compact.
Moreover, if the metric of the radical is AdR-invariant then we may remove the requirement of the AdR-
invariance of D, since it follows from Proposition 2.2. From Proposition 2.7 and Remark 2.8 it follows
that the fibration L cannot be constructed for left-invariant contact structures.
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§ 3. Affinor Metric Structures
Suppose that G is a connected Lie group, α is a left-invariant 1-form, β is a left-invariant metric of

the radical r, and D is the radical of β.

Definition 3.1. An affinor of a 1-form α is a field of endomorphisms Φ of the Lie algebra g of G
having the following properties:
(1) ΦX ∈ D for all X in g and ΦY = 0 for all Y in r;
(2) dα(ΦX,ΦY ) = dα(X,Y ) for all X and Y in g;
(3) Φ2X = −X + ω(X) for all X in g, where ω is the connection form of item (2) of Theorem 2.5;
(4) a 2-form dα(X,ΦY ) is positive definite for all X and Y in D.
An affinor Φ is called left-invariant if Φ commutes with left translations on G and bi-invariant if Φ

commutes with both left and right translations on G.
From (3) it follows that if X ∈ D then Φ2X = −X; properties (2) and (3) imply that dα(ΦX,Y ) =

−dα(X,ΦY ) for all X and Y in g, and (1) and (4) imply that the radical of Dα(X,ΦY ) coincides with
radα and its restriction to D is a Riemannian metric.

Definition 3.2. An affinor metric structure g on a Lie group G is a triple (α,Φ, β) such that

g(X,Y ) = dα(X,ΦY ) + β(X,Y ) for all X and Y in g,

where α is a 1-form with radical r, Φ is the affinor of α, and β is the metric of a radical r.
An affinor metric structure is called left-invariant if the tensor fields α, φ, and β are left-invariant

and bi-invariant if these tensor fields are bi-invariant.

It is straightforward from Definition 3.2 that the distribution D and the radical r are orthogonal with
respect to the affinor metric. Thus, if the Lie group is endowed with an affinor metric structure then D
may be defined uniquely as the orthogonal complement to the radical of α.
Suppose that dαΦ is the restriction of dα(X,ΦY ) to D, the distribution D is involutive, H is the

subgroup generated by D, and L is the fibration G
π→ H of Section 2. Then dαΦ is a metric on the base

of the fibration L and the metric of the radical βh, h ∈ H, defines some metric in each fiber over a point
h ∈ H. Thus, we may apply all notions and results of [8] to affinor metric structures.
Example 1. Let G be a connected Lie group of dimension 2n+1 and let α be a left-invariant contact

form on G. The radical of α has dimension 1 and is generated by a vector field X0. Introduce a metric
of the radical β by setting β(X,Y ) = α(X)α(Y ) for all X and Y in g. In this case the distribution D
coincides with the kernel of α and the left-invariant affinor metric structure takes the form

g(X,Y ) = dα(X,ΦY ) + α(X)α(Y ),

where Φ is an affinor of α such that ΦX0 = 0. These affinor metric structures are called contact metric
structures; they are studied in detail in [1].

Example 2. Let G be a Lie group of the form G = H × R, where H is a nilpotent symplectic
Lie group with left-invariant symplectic structure ω such that the operator adX ◦ adY is nilpotent for all
X ∈ h and Y ∈ g and let R be a semisimple Lie group with nontrivial center. Let α be a left-invariant
1-form on G such that the restriction of dα to H coincides with Ω and radα = r. The Killing–Cartan
form B degenerates on H and is nondegenerate and negative definite on R. Since the trace of any
nilpotent operator is equal to zero, radB = h. As the metric of the radical, take the form β = −B. In
this case D coincides with h. Let J be a left-invariant almost complex structure on H preserving the
symplectic structure Ω and let X0 be a fixed vector field lying in the center of the Lie algebra r. Introduce
a field of linear operators Φ on G as follows:

ΦX =

{
JX if X ∈ h,
adX0 X if X ∈ r.

It is easy to check that Φ is an affinor for α.
Thus, the corresponding left-invariant affinor metric structure takes the form

g(X,Y ) = dα(X,ΦY )−B(X,Y ).
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Proposition 3.3. A left-invariant affinor metric structure g = (α,Φ, β) is AdR-invariant if and only
if Adh ◦Φ = Φ ◦Adh and Ad∗h β = β for every h in the radical subgroup R.
Proof. Using the fact that the radical subgroup is a connected component of the isotropy subgroup

of α, we infer

g(AdhX,Adh Y ) = dα(AdhX,Φ ◦Adh Y ) + β(AdhX,Adh Y )
= dα(AdhX,Adh ◦ΦY ) + β(X,Y ) = −(1/2)α(Adh[X,ΦY ]) + β(X,Y )

= −(1/2)α([X,ΦY ]) + β(X,Y ) = g(X,Y )
for all h in R and X and Y in g.
Conversely, if an affinor metric structure G is AdR-invariant then the metrics dαΦ and β are also

AdR-invariant, since they are restrictions of g. Given h in R and X,Y in D, we have

dα(X,Adh−1 ◦Φ ◦Adh Y ) = dα(AdhX,Φ ◦Adh Y ) = dα(X,ΦY ),
i.e., Adh ◦Φ = Φ ◦Adh.
Proposition 3.4. Let R be the radical subgroup of a left-invariant 1-form α and let g = (α,Φ, β)

be an AdR-invariant affinor metric structure. Then D is invariant under the adjoint action of R.

Proof. For all h in R and X and Y in g, we have

β(AdhX,Adh Y ) = g(AdhX,Adh Y )− dα(AdhX,Φ ◦Adh Y )
= g(X,Y )− dα(AdhX,Adh ◦ΦY ) = g(X,Y )− dα(X,ΦY ) = β(X,Y ).

The assertion is now immediate from Proposition 2.2.

Proposition 3.4 makes it possible to describe the structure of the Lie algebras of Lie groups admitting
AdR-invariant affinor metric structures. If the distribution D on such a Lie group is involutive, its Lie
algebra is the orthogonal sum of D and the radical r is reducible in the sense of Nomizu. If D is involutive
then its Lie algebra is the semidirect product of D and r.
In Section 2 we show that if D is a subalgebra then α cannot be a contact structure. Therefore, the

following theorem holds only for left-invariant noncontact 1-forms.

Theorem 3.5. Suppose that R is the radical subgroup of a left-invariant noncontact 1-form α,
g = (α,Φ, β) is an AdR-invariant affinor metric structure on the fibration L, and ∇ is the Levi-Civita
connection of g. Then
(1) the subalgebra D = radβ is a connection for L; in the case when the radical subgroup is

commutative, the connection D is flat and the connection form is as follows:

ω(X) =
m∑

i=1

g(X,Ei)Ei,

where E1, . . . , Em is a fixed basis for the radical of α;
(2) the radical subgroup is a totally geodesic submanifold of G, i.e., it is formed by all geodesics

issuing from the unity of G and tangent to radα;
(3) the restriction of ∇ to D is the Levi-Civita connection of the metric dαΦ on the subgroup H

generated by D.

Proof. (1) Using Proposition 3.4 and arguing as in the proof of Theorem 2.5, we obtain (1).
(2) Applying the invariant definition of the Levi-Civita connection, we infer that

g(∇XX,Y ) = (1/2)(g(X, [X,Y ])− g(X, [Y,X]) + g(Y, [X,X])) = g(X, [X,Y ])
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for every X in radα = r and every Y in g. Since the metric g is AdR-invariant, the operator adX is
skew-symmetric (see [9] for details). We have

g(X, [X,Y ]) = −g([X,X], Y ) = 0,

i.e., ∇XX = 0. Consequently, each curve of the form exp(X(t)), where X ∈ r, is a geodesic with origin
at the unity of G.
(3) Using the orthogonality of D and r and the skew symmetry of adZ , we infer that X and Y in D

and Z in r

g(∇XY, Z) = (1/2)(g(X, [Y, Z]) + g(Y, [X,Z]) + g(Z, [X,Y ])) = (1/2)g(Z, [X,Y ]) = 0,

i.e., ∇XY ∈ D for all X and Y in D.
Remark 3.6. If the affinor metric structure g = (α,Φ, β) is AdH -invariant then H is the connected

subgroup generated by D then the restriction of ∇ to r is the Levi-Civita connection of β.

§ 4. K-Affinor Metric Structures
Let G = (α,Φ, β) be an affinor metric structure on the Lie group G. By the Riesz Theorem about

a linear functional (for example, see [10]), there exists a unique vector field ξ such that α(X) = g(ξ,X)
for all X in TG. This vector field is called the characteristic vector field of the affinor metric structure.
If the affinor metric structure g is left-invariant then its characteristic vector field ξ is also left-invariant,
i.e., lies in g.

Definition 4.1. An affinor metric structure g is called K-affinor if its characteristic vector field ξ
generates a one-parameter group of isometries of the metric g.

For a left-invariant affinor metric structure, this definition is equivalent to the assertion that the
metric g is AdH -invariant, where H is the one-dimensional subgroup generated by the characteristic
vector field.
The simplest example of a K-affinor metric structure is given by the affinor metric structure g =

(α,Φ, α ⊗ α), where α is a contact structure on G with the characteristic vector field ξ which generates
the one-dimensional radical of α and is a unit-length Killing vector field. These metric structures are
called K-contact and studied in [1].

Proposition 4.2. A left-invariant affinor metric structure g with characteristic vector field ξ is
K-affinor if and only if the operator adξ is skew-symmetric with respect to g.

Proof. Let h(t) be a one-parameter subgroup generated by the characteristic vector field ξ. Then

d

dt
g(Adh(t)X,Adh(t) Y ) = g([ξ,Adh(t)X],Adh(t) Y ) + g(Adh(t)X, [ξ,Adh(t) Y ])

for all X and Y in g. If g is Adh(t)-invariant then, for t = 0, we have g(adξX,Y )+ g(X, adξ Y ) = 0, and,
conversely, if adξ is skew-symmetric then

d

dt
g(Adh(t)X,Adh(t) Y ) = g([ξ,Adh(t)X],Adh(t) Y ) + g(Adh(t)X, [ξ,Adh(t) Y ]) = 0,

whence g(Adh(t)X,Adh(t) Y ) = g(X,Y ) for all t.

As in the proof of Proposition 4.2, we may demonstrate that an affinor metric structure g is bi-
invariant if and only if the operator adX is skew-symmetric with respect to g for every X in g. A detailed
exposition may be found in [9].
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Theorem 4.3. Every connected Lie group of dimension ≥ 3 admits no bi-invariant metric structures
with nontrivial radical.

Proof. Suppose that a group G admits a bi-invariant affinor metric structure g = (α,Φ, β) with
nontrivial radical. Let R be the radical subgroup of α and let ξ be the characteristic vector field of
the metric structure g. The subgroup R is a proper subgroup of G and coincides with the connected
component of the unity of the isotropy subgroup of the adjoint action of G at α. Given h in G and X
in g, we have

Ad∗h α(X) = α(AdhX) = g(Adh ξ,AdhX) = g(ξ,X) = α(X).

Thus, the isotropy subgroup coincides with the entire group G and is connected. Hence, R = G, which
contradicts to the fact that the radical subgroup is a proper subgroup.

Proposition 4.4. Suppose that g = (α,Φ, β) is a left-invariant K-affinor metric structure on a Lie
group G, ξ is its characteristic vector field, and ∇ is its Levi-Civita connection. Then
(1) ξ ∈ radα;
(2) ∇ξX = −ΦX and ∇Xξ = −ΦX − adξX for every X in g;
(3) g(∇XY, ξ) = g(X,ΦY ) for all X and Y in g;
(4) adξ = −2Φ.
Proof. (1) By Proposition 4.2 we infer that, for every X in g,

dα(ξ,X) = −(1/2)α([ξ,X]) = −(1/2)g(ξ, [ξ, x]) = (1/2)g([ξ, ξ], X) = 0,

i.e., ξ ∈ radα.
(2) Applying the invariant definition of the Levi-Civita connection and Proposition 4.2, we find that,

for all X and Y in g,

g(∇ξX,Y ) = (1/2)(ξ, [X,Y ]) + g(X, [ξ, Y ]) + g([ξ,X], Y ) = (1/2)g(ξ, [X,Y ])
= (1/2)α([X,Y ]) = −dα(X,Y ) = −g(ΦX,Y ),

i.e., ∇ξX = −ΦX, the equality ∇Xξ = −ΦX−adξX follows from the condition that the torsion of ∇ is 0.
(3) Given X and Y in g, we have

g(∇XY, ξ) = (1/2)(−g(X, [ξ, Y ])− g([ξ,X], Y ) + g(ξ, [X,Y ])) = (1/2)g(ξ, [X,Y ])
= (1/2)α([X,Y ]) = −dα(X,Y ) = g(X,ΦY ).

(4) Using (2) and (3), for all X and Y in g we infer

g(adξX,Y ) = −g(ΦX,Y )− g(∇Xξ, Y ) = −g(ΦX,Y ) + g(ξ,∇XY )
= −g(ΦX,Y ) + g(X,ΦY ) = −2g(ΦX,Y ),

i.e., adξX = −2ΦX.
Proposition 4.5. If a left-invariant vector field ξ lies in the center of the Lie algebra g of a Lie

group G then G admits no K-affinor metric structures with characteristic vector field ξ.

Proof. Suppose that the groupG admits a K-affinor metric structure g for which ξ is a characteristic
vector field. By Proposition 4.4, we have Φ = −(1/2) adξ = 0, which contradicts Definition 3.1.
Denote by E the kernel of α. The codimension of the distribution E is equal to 1, and the Lie

algebra of G splits into the orthogonal sum of E and the straight line generated by the characteristic
vector field ξ.
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Theorem 4.6. The sectional curvature k of a K-affinor metric structure g = (α,Φ, β) on a Lie
group G with characteristic vector field ξ is equal to 1 in every two-dimensional direction contained ξ.

Proof. Without loss of generality, we may prove the equality k(ξ,X) = 1 by assuming that the
vector fields ξ and X have unit length and X lies in E. Since ξ lies in radα, by Theorem 3.5 ∇ξξ = 0.
Using Proposition 4.4, we infer

k(ξ,X) = g(∇[ξ,X]ξ,X) + g(∇ξ∇Xξ,X)− g(∇X∇ξξ,X) = −g(Φ ◦ adξX,X)
−g(ad2ξX,X)− g(Φ∇XX,X) = 2g(X,X) + g(Φ2X,X) = g(X,X) = 1.

Corollary 4.7. The Ricci curvature of a K-affinor metric structure g on a Lie group G of dimension n
in the direction of its characteristic vector field ξ is equal to n− 1.
Proof. Fix an orthonormal basis E1, . . . , En−1 for E. By Theorem 4.6, k(Ei, ξ) = 1 for all i =

1, 2, . . . , n− 1. Then
Ric(ξ) =

n−1∑

i=1

k(Ei, ξ) = n− 1.

Corollary 4.8. A Lie group of dimension n ≥ 3 admits no left-invariant K-affinor metric structures
with negative sectional curvature. Every left-invariant K-affinor metric structure with positive definite
sectional curvature has scalar curvature at least n− 1.
This is immediate from the fact that a K-affinor metric structure always has sectional curvatures

equal to 1 in some directions and the scalar curvature of the Riemannian metric is equal to the sums of
the Ricci curvatures along all basis directions.

§ 5. Normal Affinor Metric Structures
Suppose that g = (α,Φ, β) is a left-invariant affinor metric structure on a Lie group G, while ξ is the

characteristic vector field of g, r = radα, and D = radβ.

Definition 5.1. A left-invariant metric structure g on a Lie group G is called normal if adΦX =
Φ ◦ adX for all X in the Lie group of G.
By Theorem 1.5, the dimension of D is always even. If the distribution D is the Lie subalgebra of the

Lie algebra G and H is the connected subgroup generated by D then the affinor Φ defines a left-invariant
almost complex structure on H. In [5, Chapter 9] it is proved that every almost complex structure J
satisfying the condition J ◦ adX = adJX is integrable. Thus, the affinor Φ of the normal affine metric
structure g defines a complex structure on the subgroup H, and the restriction of g to H is a Kähler
metric on H.
We now prove that a normal affinor metric structure cannot be K-affinor.

Proposition 5.2. The sets of left-invariant normal and K-affinor metric structures on a Lie group G
do not intersect.

Proof. Let g be a normal affinor metric structure with affinor Φ and characteristic vector field ξ.
If the metric structure g is K-affinor then, by Proposition 4.4(4), Φ = −(1/2) adξ. Given X in g, we get

adΦX = −(1/2) ad[ξ,X] = (1/2)(adX ◦ adξ − adξ ◦ adX).
On the other hand,

adΦX = Φ ◦ adX = −(1/2) adξ ◦ adX .
Comparing the right-hand sides of the last two equalities, we have adX ◦ adξ = 0, and, in particular,
ad2ξ = 0. Thus, Φ

2 = 0, which contradicts Definition 3.1.
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Now, let G be a Lie group of dimension 2n and let J be a left-invariant complex structure on G
preserving a normal affinor metric structure g = (α,Φ, β). The fundamental 2-form of the Hermitian
metric g has the form

Ω(X,Y ) = dα(X,Φ ◦ JY ) + β(X, JY ).
Since the complex structure J also preserves the form β and dΩ(X,Y ) = dβ(X, JY ), the normal affinor
metric structure is Kähler if and only if the fundamental 2-form of the metric of the radical is closed.
Since the restriction of the fundamental 2-form of a Kähler normal metric structure g to the radical

subgroup R is a left-invariant symplectic structure on R, we obtain the following result:

Proposition 5.3. Suppose that α is a left-invariant nonclosed 1-form on a Lie group G, R is the
radical subgroup of α, and J is a left-invariant complex structure on G. If G admits a left-invariant Kähler
normal affinor metric structure associated with the 1-form α and the complex structure J then the radical
subgroup R admits a left-invariant symplectic structure invariant under the complex structure J .
Conversely, if the radical subgroup does not admit left-invariant symplectic structures invariant

under the complex structure J then G admits no left-invariant Kähler normal affinor metric structures
associated with the complex structure J .

If an almost complex structure J maps the subspaces r andD into themselves then it may be identified
with a pair of almost complex structures JR and JD, where JR is the restriction of J to r and JD is the
restriction of J to D. Such an almost complex structure is called reducible.
Let P be a left-invariant endomorphism of the Lie algebra of a Lie group G. Denote by AP the

left-invariant tensor field of the type (2, 1) of the following form:

AP (X,Y ) = P [X,Y ]− P [PX,PY ]− [PX, Y ]− [X,PY ] for all X and Y in g,
and by C(Φ), the set of all left-invariant endomorphisms of the Lie algebra of G anticommuting with the
affinor Φ.

Theorem 5.4 (The Reduction Theorem). Let g = (α,Φ, β) be a left-invariant normal affinor metric
structure on the Lie group G, let the distribution D = radβ be a subalgebra in g, let J = (JR, JD) be
a left-invariant reducible almost complex structure on G preserving dα, and AP ≡ 0 on D for every P
in C(Φ). Then J is integrable on G if and only if JR is integrable on the radical subgroup R.

Proof. In [11] it is proved that if J0 is a fixed almost complex structure preserving the metric g
then every almost complex structure J preserving the fundamental 2-form of g associated with the almost
complex structure J0 has the form

J = J0 ◦ (I + P ) ◦ (I − P )−1,
where I is the field of identity operators, P is the field of linear operators symmetric with respect to g
and such that J0 ◦P = −P ◦J0 and det(I −P 2) �= 0. Since the metric structure g is normal, its affinor Φ
is a complex structure on D. Choosing the affinor Φ as J0, we infer that each almost complex structure
JD preserving dα has the form

JD = Φ ◦ (I + P ) ◦ (I − P )−1 = (I − P ) ◦ Φ ◦ (I − P )−1,
where P is an endomorphism of the subalgebraD symmetric with respect to g and anticommuting with Φ.
Put Q = I − P . Since AP ≡ 0 on D, for all X and Y in D we have

[QX,QY ] = [X,Y ]− [PX, Y ]− [X,PY ] + [PX,PY ] = [X,Y ]− P [X,Y ] = Q[X,Y ],
i.e., the linear operator Q is an automorphism of D and JD = Q ◦ Φ ◦ Q−1. Since the almost complex
structure JD is isomorphic to the complex structure Φ, it is integrable on D.
Thus, the integrability of an almost complex structure J is reduced only to the integrability of JR

on the radical r.
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Corollary 5.5. Suppose that g = (α,Φ, β) is a left-invariant normal affinor metric structure on
a Lie group G, the distribution D = radβ is a subalgebra in g, J is a left-invariant reducible almost
complex structure on G preserving dα, and AP ≡ 0 on D for every P in C(Φ). If the radical subgroup R
of α is commutative then J is integrable on G.

Proof. In [5, Chapter 9] it is proved that an almost complex structure J is integrable if and only if

[JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ] = 0
for all vector fields X and Y . By the commutativity of R, the equality holds for all X and Y in r and J
is integrable by Proposition 5.3.

Let g = (α,Φ, β) be a Hermitian normal affinor metric structure on a Lie group G. The metric
structure g is called locally conformally Kähler if, for every x ∈ G, there exist a simply connected
neighborhood U and a function f and a Kähler metric h defined in this neighborhood such that the
restriction of g to U is equal to exp(−f)h. It is proved in [12] that a Hermitian metric structure g with
fundamental 2-form Ω is a locally conformally Kähler if and only if G admits a closed differential 1-form
η such that dΩ = η ∧Ω. If J is a reducible complex structure preserving the metric structure g then, by
the equality dΩ(X,Y ) = dβ(X, JY ), we infer that a normal affinor metric structure is locally conformally
Kähler if and only if there is a closed 1-form η on G such that dβJ = η∧Ω, where dβJ(X,Y ) = β(X, JY )
for all X and Y in g. Obviously, η cannot coincide with α.
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