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SUBTWISTOR STRUCTURES AND SUBTWISTOR BUNDLE
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Abstract: We introduce the notions of subtwistor structure and subtwistor bundle. Under considera-
tion is some particular case of subtwistor structures, sub-Kähler structures. The subtwistor bundle for
the four-dimensional sphere is described. We also provide some examples of the manifolds that admit or
do not admit any subtwistor structure. For a real manifold of arbitrary dimension, we give conditions
for the existence of a sub-Kähler structure, which implies the existence of sub-Kähler submanifolds.
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§ 1. Introduction
The theory of Kähler and complex manifolds contains the notions of twistor bundle and twistor

structure. This article is devoted to the generalization of the notion of twistor bundle, the subtwistor
bundle. In [1], we introduced the notion of subtwistor bundle as a generalization of the twistor bundle
to the case of a degenerate skew-symmetric 2-form on a manifold of arbitrary dimension. For constructing
the subtwistor bundle on a manifold M of arbitrary dimension, we have to define a skew-symmetric 2-
form Ω at each point of M , the set of all affinors associated with Ω at this point, and the set of all
possible interior products in the vector space radΩx which is the radical (in another terminology, the
kernel) of the 2-form Ω at a point x. Here the 2-form Ω can be degenerate, i.e. have nonzero radical.
In contrast to the classical twistor bundle, the subtwistor bundle can be defined for a manifold of any
even or odd dimension. In the present article, we provide some examples of the manifolds that admit or
do not admit any subtwistor structure and describe the subtwistor bundles of a few manifolds.
Interest in the study of degenerate skew-symmetric 2-forms is due to the problems of finding sym-

plectic and Kähler submanifolds of manifolds of arbitrary dimension. In [2], homogeneous spaces with
invariant degenerate skew-symmetric closed 2-form are studied, and the articles [1, 3] deal with the sub-
Kähler structures that enable us to obtain Kähler submanifolds. Moreover, subtwistor structures arise
in various physical applications of Riemannian geometry, in particular, in string theory, analytical me-
chanics, and the theory of Calabi–Yau spaces.
To define a subtwistor structure on a manifold M , we must endow M with a subtwistor structure,

a regular skew-symmetric 2-form Ω with nonzero radical radΩ, a complementary distribution of tangent
spaces D to radΩ on which the-2-form Ω is nondegenerate, an affinor Φ that is a generalization of the no-
tion of an almost complex structure associated with Ω, and an interior product on the distribution radΩ,
called a radical metric, which enables us to obtain a global Riemannian metric on M . Subtwistor struc-
tures with closed 2-form Ω make it possible to introduce the notion of sub-Kähler structure (see [1]),
and subtwistor structures with exact 2-form Ω make it possible to obtain the affinor metric structures
(see [4, 5]) that generalize contact metric structures for manifolds of any dimension and Lie algebroids.
In this article, we show how, using subtwistor and sub-Kähler structures, we can obtain Kähler subman-
ifolds of a manifold of arbitrary dimension as well as the subtwistor bundle for the manifolds that do not
admit a symplectic or Kähler structure.
Section 2 contains the necessary information and properties for the subtwistor structures introduced

in [1]. Section 3 deals with a particular case of subtwistor structures, sub-Kähler structures, and give
the conditions under which a subtwistor structure defines a sub-Kähler structure. In Section 4, we
introduce the notion of subtwistor bundle and show how it is related to the existence of a subtwistor
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structure on a manifold. In Section 5, we describe the subtwistor bundle of the four-dimensional sphere.
Section 6 is devoted to the study of invariant subtwistor structures and contains homogeneous examples
of subtwistor structures. We use the results and notions that had been described in [1, 3].

§ 2. Subtwistor Structures
Let M be a smooth real manifold of dimension n ≥ 3, let Ω be a bilinear form on M , and let X

be a smooth vector field on M . Denote by IX Ω the interior product of X and Ω, whose result is the
1-form IX Ω such that IX Ω(Y ) = Ω(X,Y ) for every vector field Y on M .

Definition 2.1. The radical of Ω on M at x is the tangent subspace radΩx = {v ∈ TxM :
Iv Ωx = 0}. The form Ω is called regular if the distribution of radicals radΩ has constant rank on M .
We will denote by radΩ the distribution of radicals of a bilinear form Ω on a manifoldM . Sometimes,

the radical of Ω is called the kernel of Ω. Obviously, Ω is nondegenerate if and only if radΩ = {0}.
Theorem 2.2. Let M be a smooth manifold of dimension n ≥ 3, let Ω be a skew-symmetric regular

2-form on M , and let r be the rank of radΩ. Then
(1) if n is even then so is r and 0 ≤ r ≤ n− 2;
(2) if n is odd then so is r and 1 ≤ r ≤ n− 2;
(3) if dΩ = 0 then radΩ is a holonomic distribution on M .

Proof. Demonstration of items (1) and (2) can be found in [4], while the proof of item (3), in [1].
Let D be a distribution of tangent subspaces on M complementary to radΩ such that the restriction
of Ω to every fiber of D is nondegenerate. Such a distribution is called a work bundle for Ω. Theorem 2.2
implies that a work bundle D has even rank for a manifold of any dimension. This fact enables us
to introduce the important notion of affinor associated with a regular skew-symmetric 2-form.

Definition 2.3. Let Ω be a regular skew-symmetric 2-form on a manifold M and let D be a work
bundle for Ω. By an affinor associated with Ω we mean a continuous field Φ of endomorphisms of tangent
subspaces on M satisfying the conditions:
(1) kerΦ = radΩ;
(2) Φ2|D = − id, where id is the field of identity operators on M ;
(3) Ω ◦ Φ = Ω;
(4) Ω(X,ΦX) ≥ 0 for every vector field X ∈ C1(TM).
The following important properties of an affinor are immediate from Definition 2.3.

Proposition 2.4. Let Φ be an affinor associated with a regular skew-symmetric 2-form Ω on M
and let D be a work bundle for Ω.
(1) The restriction of Φ to D is a complex structure in the fibers of D preserving Ω.
(2) Φ is an affinor associated with λΩ for every continuous function λ on M such that λ(x) > 0

for all x ∈M .
(3) −Φ is an affinor associated with μΩ for every continuous function μ on M such that μ(x) < 0

for all x ∈M .
Let Ω be a regular skew-symmetric 2-form on a manifoldM with work bundleD and let Φ be an affinor

associated with Ω. Denote by ΩΦ the symmetric 2-form on M such that ΩΦ(X,Y ) = Ω(X,ΦY ) for all
vector fields X,Y ∈ C1(TM).
Definition 2.3 implies that radΩΦ = radΩ and the restriction of ΩΦ to D is an interior product in the

fibers of D. A radical metric of a bilinear regular form Ω on M is a symmetric bilinear form β on M
such that radβ = D, where D is a work bundle for Ω and the restriction of β to radΩ is an interior
product in the fibers of radΩ. Endow M with the Riemannian metric g = ΩΦ + β. To construct this,
we need some collection of objects (Ω, D,Φ, β) where Ω is a regular skew-symmetric 2-form on M and D
is a work bundle for Ω, while Φ is an affinor associated with Ω, and β is a radical metric of Ω. Such
a collection of objects is called a subtwistor structure on M . Obviously, if radΩ = {0} then D = TM ,
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β = 0, and (Ω,Φ) is a twistor structure on M . The alternative definition of subtwistor structure as well
as the properties and examples of subtwistor structures can be found in [1].
For studying the question of existence of a subtwistor structure on a manifold, we will need some

topological conditions that are connected with characteristic classes. Let E be a vector bundle over
a smooth manifold M , let e(E) be the Euler class of E, and let w1(E) be the first Stiefel–Whitney
class of E. If M admits an everywhere nonzero global section then e(E) = 0. If the fibers of a vector
bundle E are endowed with orientation depending continuously on a point x ∈ M and M is orientable
then w1(E) = 0 (see [6]).
Let (Ω, D,Φ, β) be a subtwistor structure on a manifold M and let Λ2(M) be the bundle of skew-

symmetric 2-forms on M . Since Ω is a regular 2-form on M ; therefore, Ωx �= 0 for all x ∈ M and Ω is
a global section of Λ2(M). Since each complex structure in the vector space Dx defines orientation in Dx
and Φ is a complex structure in the fibers of D, we obtain

Proposition 2.5. If an orientable manifold M admits a subtwistor structure with work bundle D
then e(Λ2(M)) = 0 and w1(D) = 0.

If M is a compact orientable manifold without boundary and χ(M) is the Euler characteristic of M
then χ(M) =

∫
M e(M), where e(M) is the Euler class of the tangent bundle TM (see [6]). This yields

Corollary 2.6. If the total space of the bundle Λ2(M) over a manifold M is a compact orientable
manifold without boundary and χ(Λ2(M)) �= 0 then M does not admit subtwistor structures.
Let us discuss how subtwistor structures are connected with the problem of obtaining Kähler sub-

manifolds of an arbitrary manifold.

§ 3. Sub-Kähler Structures
Let M be a real smooth manifold of dimension ≥ 3 and let (Ω, D,Φ, β) be a subtwistor structure

on M . We will refer to Ω as the fundamental 2-form of the subtwistor structure. In general, the work
bundle D is not a holonomic distribution on M . If dΩ = 0 and D is a holonomic distribution on M then
in M there is a submanifold Q : D|Q = TQ and the restriction of the affinor Φ to Q is an almost complex
structure on Q. Putting ΩΦ(X,Y ) = Ω(X,ΦY ), X,Y ∈ C1(TM), we infer that (Ω,Φ,ΩΦ) is an almost
Kähler structure on Q.

Definition 3.1. A sub-Kähler structure on a manifold M of dimension ≥ 3 is a collection of objects
(Q,Ω, D,Φ, β), where Ω is a closed regular skew-symmetric form on M and D is a work bundle for Ω,
while Φ is an affinor associated with Ω, β is a radical metric of Ω, and Q is a submanifold in M such
that TQ = D|Q and the restriction of Φ to Q is a complex structure on Q.
It is obvious from the definition that the existence of a sub-Kähler structure on a manifoldM of arbi-

trary dimension implies the existence of Kähler submanifolds of M . It remains to find out the conditions
for a subtwistor structure with closed fundamental 2-form to induce a sub-Kähler structure on M .

Definition 3.2. The torsion of a subtwistor structure (Ω, D,Φ, β) on a manifoldM is the continuous
tensor field N of type (2, 1) defined at a pair of vector fields X,Y ∈ C1(TM) as follows:

N(X,Y ) = [ΦX,ΦY ]− Φ[ΦX,Y ]− Φ[X,ΦY ] + Φ2[X,Y ],
where [X,Y ] is the Lie bracket of X and Y .
Let N be the torsion tensor of a subtwistor structure (Ω, D,Φ, β) on M and let dΩ = 0. It was

proved in [1] that the condition N = 0 implies that the work bundle D is a holonomic distribution on M
and, for any integral submanifold Q : TQ = D|Q, the restriction of Φ to Q is a complex structure on Q.
Thus, we obtain

Proposition 3.3. Let M be a real manifold of dimension n ≥ 3 and let (Ω, D,Φ, β) be a subtwistor
structure on M with radical of rank r ≥ 1, closed fundamental 2-form Ω, and zero torsion tensor. Then
the work bundle D is a holonomic distribution on M whose every integral submanifold Q : TQ = D|Q is
a Kähler submanifold of complex dimension n−r2 and (Q,Ω, D,Φ, β) is a sub-Kähler structure on M .
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Since every almost complex structure on a two-dimensional real manifold is integrable (see [8, Chap-
ter 9]), we obtain

Proposition 3.4. Let M be a real manifold of dimension n ≥ 3. Each subtwistor structure
(Ω, D,Φ, β) on M with closed fundamental 2-form Ω, radical of maximal rank n − 2, and involutive
work bundle D, generates the sub-Kähler structure (Q,Ω, D,Φ, β) on M , where Q is the maximal inte-
gral submanifold for D.

The simplest example of a manifold with sub-Kähler structure is given by the direct product of
a Kähler manifold and a Riemannian manifold. Some nontrivial class of examples can be obtained
by the so-called normal subtwistor structure. A subtwistor structure (Ω, D,Φ, β) is called normal if
[ΦX,Y ] = Φ[X,Y ] for all X ∈ C1(D) and Y ∈ C1(TM).
Proposition 3.5. Suppose that M is a real manifold of dimension v≥ 3, (Ω, D,Φ, β) is a normal

subtwistor structure on M , and dΩ = 0. Then D is a holonomic distribution on M , every integral
submanifold Q : TQ = D|Q is a Kähler submanifold of M , and the set of all smooth sections of D is
an ideal in the space of vector fields on M .

Proof. Let N be the curvature tensor of (Ω, D,Φ, β). By Definition 3.2,

N(X,Y ) = [ΦX,ΦY ]− Φ[ΦX,Y ]− Φ[X,ΦY ] + Φ2[X,Y ]
= −Φ2[X,Y ] + Φ2[X,Y ]− Φ2[X,Y ] + Φ2[X,Y ] = 0

for all X,Y ∈ C1(D). Using (1) of Definition 2.3 and given X ∈ C1(D) and Y ∈ C1(radΩ), we have
N(X,Y ) = −Φ[ΦX,Y ] + Φ2[X,Y ] = 0.

Since N |radΩ = 0, we infer finally that N = 0 on M . Proposition 3.3 implies that D is a holonomic
bundle on M and any integral submanifold Q: TQ = D|Q is a Kähler submanifold in M .
Since D is a holonomic distribution on M , the Frobenius Theorem implies that D is an involutive

distribution on M . Definition 2.3 implies that ΦX ∈ C1(D) for all X ∈ C1(TM). Given X ∈ C1(D)
and Y ∈ C1(radΩ), we have [ΦX,Y ] = Φ[X,Y ] ∈ C1(D). Since Φ is a linear automorphism of the fibers
of D and C1(TM) = C1(D)⊕ C1(radΩ), we conclude that C1(D) is an ideal of C1(TM).
Remark 3.6. Proposition 3.5 and the Frobenius Theorem imply that, for a normal subtwistor

structure (Ω, D,Φ, β), there exist integral submanifolds Q : TQ = D|Q and R : TR = radΩ|R but M is
locally isometric to Q×R only if [D, radΩ] = 0.

§ 4. The Subtwistor Bundle
Let V be a vector space of dimension ≥ 3 over the field R. A subtwistor structure with radical

of dimension r in V is a collection of objects (Ω, D,Φ, β), where Ω is a skew-symmetric bilinear form
on V with radical of dimension r and D is an even-dimensional subspace in V such that the restriction
of the form Ω to D is nondegenerate, while Φ is an affinor associated with the form Ω as in Definition 2.3,
β is a symmetric bilinear form on V such that radβ = D and the restriction of β to radΩ is an interior
product on radΩ. By a bundle over a manifold M we mean a manifold P with projection π : P → M ,
where π is a continuous surjective mapping onto M . Proposition 2.4 implies that, for every constant
λ > 0, the 2-forms Ω and λΩ on V have the same set of associated affinors. We will assume that the
subtwistor structures (Ω1, D1,Φ1, β1) and (Ω2, D2,Φ2, β2) are equivalent if Ω2 = λΩ1, λ > 0, D2 = D1,
Φ2 = Φ1, and β2 = β1.

Definition 4.1. The subtwistor bundle with radical of rank r over a manifold M is the bundle P
with projection π : P →M such that π−1(x) is the set of cosets of the subtwistor structures with radical
of dimension r in the tangent space TxM for all x ∈M .
A subtwistor structure with radical of rank r on a manifold M is a global section of the subtwistor

bundle over M with radical of rank r. For r = 0, each affinor at x ∈M is an orthogonal almost complex
structure at x. It follows that the classical twistor bundle is a subbundle of the subtwistor bundle with
radical of rank 0.
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Proposition 4.2. Let M be a paracompact manifold of dimension n ≥ 3. Every fiber of the
subtwistor bundle with radical of rank r = n − 2k over M is isomorphic to gr2k×SO(2k)/U(k) ×
SM(r), where gr2k is the 2k-Grassmannian in Rm, while SO(2k) is the group of all orthogonal 2k × 2k-
matrices with determinant 1, U(k) is the group of all Hermitian k × k-matrices, and SM(r) is the space
of nondegenerate positive-defined symmetric r × r-matrices.
Proof. A paracompact manifold always admits a Riemannian metric g (see [7]). If (Ω, D,Φ, β) is

a subtwistor structure with radical of rank r in the vector space V = TxM, x ∈ M ; then the metric g
defines the interior product (·, ·) in V . Choose a 2k-frame u in V , which is an isomorphism R2k → D,
where D is the tangent space in V generated by u. Let L(n, 2k,R) be the set of all real n× 2k-matrices
of rank 2k and let GL(2k,R) be the set of all nondegenerate real 2k×2k-matrices embedded in L(n, 2k,R).
We will assume that a ∈ L(n, 2k,R) acts at the frame u from the right. Then the set of all tangent
subspaces of dimension 2k in V is isomorphic to L(n, 2k,R)/GL(2k,R) ∼= gr2k.
Definition 2.3 implies that the affinor Φ is identified with an orthogonal complex structure in a fiber

of the work bundle D. The frame u defines an isomorphism between the affinors associated with Ω and
the orthogonal complex structures in R2k; i.e., JD = u ◦ J ◦ u−1, where JD is a complex structure in D
and J is a complex structure in R2k. The set of all orthogonal complex structures on R2k is isomorphic
to SO(2k)/U(k) (see [8, Chapter 9]). Moreover, since every radical metric in V can be obtained from the
interior product induced by the metric g with the use of a nondegenerate positive-defined r × r-matrix
(see [7]), the set of all radical metrics in V is isomorphic to SM(r).
Show that a vector subspace D of dimension 2k in V and a complex structure J in D orthogonal with

respect to g uniquely define a coset of skew-symmetric 2-forms with radical of rank r = n− 2k. Denote
by R the orthogonal complement to D in V with respect to g and let Φ stand for the endomorphism of V
such that ΦX = JX if X ∈ D and ΦX = 0 if X ∈ R. Define in V the bilinear form Ω(X,Y ) = g(ΦX,Y ),
X,Y ∈ V . The properties of the orthogonal complex structure J and the construction of Φ imply that Ω
is a skew-symmetric 2-form with radical R and work subspace D. Conversely, for every skew-symmetric 2-
form with radical of rank r, there is an equivalent 2-form Ω in V whose matrix in a basis of the subspace D
orthonormal with respect to g is the matrix of a complex structure in D orthogonal with respect to g.
Here D is chosen uniquely as the orthogonal complement to radΩ with respect to g. Thus, we obtain
a one-to-one correspondence between the cosets of skew-symmetric 2-forms with radical of rank r in V
and the pairs (D, J), where D is a subspace of dimension 2k = n− r in V , and J is a complex structure
in D orthogonal with respect to g. We conclude finally that the fiber of the subtwistor bundle at a point x
is isomorphic to gr2k×SO(2k)/U(k)× SM(r).
Remark 4.3. The proof of Proposition 4.2 implies that the dimension of the fiber of the subtwistor

bundle with radical of rank r over a paracompact manifold M of dimension n ≥ 3 is equal to (n−r)24 +
r
2 (2n− r + 1).
A subtwistor bundle with radical of rank r over a manifold M of dimension n ≥ 3 isomorphic

to M × gr2k×SO(2k)/U(k)× SM(r), 2k = n− r, is called trivial. For a trivial subtwistor bundle, each
subtwistor structure in Rn induces a global section of the subtwistor bundle on M . Using Corollary 2.6,
we obtain

Proposition 4.4. Let Λ2(M, r) be the bundle of cosets of skew-symmetric 2-forms with radical r
over a manifold M , where two 2-forms are assumed equivalent if they coincide up to multiplication
by a positive real number, let Λ2(M, r) be an orientable compact manifold without boundary, and
let χ(Λ2(M, r)) be the Euler characteristic of Λ2(M, r). If the subtwistor bundle with radical of rank r
over M is trivial then χ(Λ2(M, r)) = 0.

Proposition 4.5. LetM be a paracompact manifold of dimension n ≥ 3 and let P r be the subtwistor
bundle with radical of rank r = n− 2k over M . If there is a global 2k-frame (2k-coframe) on M then P r
is trivial.

Proof. Since a paracompact manifold always admits a Riemannian metric and a Riemannian metric
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defines an isomorphism between 2k-frames and 2k-frames, it suffices to assume that a global 2k-frame u
is defined on M . At each x ∈ M , the frame u uniquely defines the 2k-dimensional tangent space Dx
and u is an isomorphism between Dx and R

2k (see [8]). As in the proof of Proposition 4.2, identify the
set of all tangent subspaces of dimension 2k in TxM with the space L(n, 2k,R)/GL(n,R) ∼= gr2k. Denote
by Dxa the tangent subspace in TxM generated by the frame ua, a ∈ L(n, 2k,R)/GL(n,R). Let J be
a complex structure in R2k and J(ua) = ua◦J ◦ (ua)−1. Then J(ua) is a complex structure in Dxa and u
induces an isomorphism between the set of all complex structures in Dxa and SO(2k)/U(k). The proof
of Proposition 4.2 implies that the Riemannian metric g on M defines an isomorphism between the set
of all radical metrics at the point x and SM(r). Since u and g depend continuously on x and are defined
globally on M ; therefore, P r is trivial.

A manifold M is called parallelizable if M admits a global n-frame, where n = dim(M). This frame
makes it possible to introduce a natural Riemannian metric on M . Now, Proposition 4.5 yields

Corollary 4.6. Let M be a parallelizable manifold of dimension ≥ 3. Then the subtwistor bundle
with radical of any possible rank over M is trivial.

Remark 4.7. If a manifold P is a trivial vector bundle of rank m ≥ 3 then P admits the subtwistor
structure induced by the subtwistor structure in Rm. However, the subtwistor bundle over P can be
nontrivial.

Obviously, on a manifold with trivial subtwistor bundle of rank r, there exists a subtwistor structure
with radical of rank r as the standard section of the subtwistor bundle. Below we will consider the example
of a manifold on which there are no subtwistor structures but the subtwistor bundle is nontrivial.

§ 5. The Subtwistor Bundle over the Four-Dimensional Sphere
Let S4 be the four-dimensional sphere embedded in R5 which is a compact orientable manifold without

boundary with the Riemannian metric induced from R5. It is known that the classical twistor bundle
over S4 is the complex projective space CP 3 with fiber CP 1 (see [9]). Here we describe the most general
case of the subtwistor bundle with radical of any rank. Theorem 2.2 implies that the subtwistor bundle
over S4 can only have a radical of rank 0 or 2. The set of all radical metrics on a Riemannian manifold
can be identified with the space of all nondegenerate positive-defined symmetric r × r-matrices, where r
is the rank of the radical. By Proposition 4.2, we have to describe the bundle gr2k(S4) ×J (gr2k(S4)),
where gr2k(S4) is the bundle of tangent subspaces of dimension 2k over S4, while J (gr2k(S4)) is the
bundle of orthogonal complex structures in the fibers of gr2k(S4), 2k = 4− r.
The complex space C4 can be identified with the quaternionic space H2 on assuming that q1 = z1+z2j

and q2 = z3 + z4j where j =
√−1. Introduce the two functions on H2 \ {0}:

f(q1, q2) = 2
q1q̄2

|q1|2 + |q2|2 , h(q1, q2) =
|q1|2 − |q2|2
|q1|2 + |q2|2 .

Note that |f(q1, q2)|2 + |h(q1, q2)|2 = 1. These functions are invariant under multiplying (q1, q2) by
a nonzero quaternion. Introduce the projection π : H2 \ {0} → S4, π(q1, q2) = (f(q1, q2), h(q1, q2)) ∈ R5.
Let the group C∗ = C\{0} act on H2 by homotheties. Then CP 3 is (H2\{0})/C∗. Since π is C∗-invariant,
π is the projection CP 3 → S4. Each nonzero quaternion q generates a complex straight line in C2. If
q �= 0 then π(qq1, qq2) = π(q1, q2). Hence, the fiber of CP 3 → S4 is (H \ {0})/C∗ ∼= CP 1 ∼= S2.
Suppose that z = (q1, q2) ∈ CP 3 and x = π(q1, q2) ∈ S4, while h is the Fubini–Study metric

on CP 3 (see [7]), and J0 is the complex structure on CP
3 induced by multiplication by the imaginary

unity. Denote by Dz the orthogonal complement to TzCP
1 in TzCP

3 with respect to h. Then TzCP
3 =

Dz ⊕ TzCP 1. Since the complex structure J0 is orthogonal and acts invariantly on TzCP 1 ∼= C, the
restriction of J0 to Dz is a complex structure in Dz. Denote the restriction of J0 to Dz by Iz. This
complex structure defines the complex structure Jz = dΠ◦Izdπ−1 in the tangent space TxS4. Note that the
complex structure Jz is orthogonal with respect to the Riemannian metric on S

4 induced by the metric h
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on CP 3 and preserves orientation in TxS
4 since Iz preserves orientation in Dz. Similarly, the complex

structure −J0 defines the orthogonal complex structure −Jz in TxS4 which changes orientation in TxS4.
Thus, with each point z = (q1, q2) ∈ CP 3, we can continuously associate a point x = π(q1, q2) ∈ S4 and
a pair of orthogonal complex structures in TxS

4.
Let HP 1 be the set of all quaternionic straight lines inH2 which is an orientable compact boundaryless

manifold diffeomorphic to S7/S3. Since gr4(S4) ∼= S4 and S4 ∼= HP 1, we obtain
Proposition 5.1. The subtwistor bundle with radical of rank 0 over the four-dimensional sphere is

isomorphic to HP 1 × CP 3 × z2.
Let Λ2(S4, 0) be the bundle of cosets of skew-symmetric 2-forms with radical of rank 0 over S4, like

in Proposition 4.4, and let χ(M) be the Euler characteristic of M . Since χ(HP 1) = 3, χ(CP 3) = 4, and
χ(z2) = 2, we obtain

χ(Λ2(S4, 0)) = χ(HP 1)χ(CP 3)χ(z2) = 24.

From Proposition 4.4 we deduce that the subtwistor bundle with radical of rank 0 is nontrivial. Moreover,
Corollary 2.6 yields

Corollary 5.2. The four-dimensional sphere does not admit subtwistor structures with radical of
rank 0.

Remark 5.3. Since every almost complex structure on a Riemannian manifoldM is orthogonal with
respect to some Riemannian metric, and every orthogonal almost complex structure on M together with
a Riemannian metric induces a subtwistor structure with radical of rank 0 on M (see § 2), Corollary 5.2
implies that the four-dimensional sphere does not admit almost complex structures.

Consider the embedding of CP 2 into CP 3 by assuming that q2 = z2 ∈ C in a pair (q1, q2) ∈ CP 3.
We have (qq1, qz2) ∈ CP 2 only if qz2 ∈ C. This is possible only if q is a nonzero complex number.
Note that Π(−q1i, z2) = π(q1, iz2), where i =

√−1, and the points (−q1i, z2) and (q1, iz2) do not lie
on the same complex straight line since −q1i �= −iq1. We infer that the fiber under the restriction
of π to CP 2 is z2. Each bundle with fiber z2 is a two-sheeted covering. It follows that CP

2 covers S4

in a two-sheeted way. Suppose that z = (q1, z2) ∈ CP 2, while Jz is the complex structure in TzCP 2
induced by multiplication by the imaginary unit, and Lz is a complex straight line in TzCP

2 ∼= C2.
Since Jz is a complex structure orthogonal with respect to the Fubini–Study metric on CP

2 and the
complex straight line Lz is invariant under multiplication by the imaginary unity, the restriction of the
complex structure Jz to Lz is an orthogonal complex structure in Lz preserving orientation in Lz. Since
in R2 there is a unique orthogonal orientation-preserving complex structure and the restriction of the
complex structure −Jz to Lz is the only orthogonal orientation-reversing complex structure in Lz, we
infer that every point z ∈ CP 2 defines exactly two orthogonal complex structures in Lz. Since dπLz is
a two-dimensional tangent subspace in TxS

4, with x = π(z) ∈ S4, and TxS4 admits only two orthogonal
complex structures ±Jx = dπ ◦ ±Jz ◦ dπ−1; we obtain
Proposition 5.4. The subtwistor bundle with radical of rank 2 over the four-dimensional sphere is

isomorphic to CP 1 × CP 2 × SM(2).
Let Λ2(S4, 2) be the bundle of cosets of skew-symmetric 2-forms with radical of rank 2 over S4 as

in Proposition 4.4. Propositions 5.4 and 4.2 imply that Λ2(S4, 2) ∼= CP 1 × CP 2. We have
χ(Λ2(S4, 2)) = χ(CP 1)χ(CP 2) = 6.

From Proposition 4.4 we infer that the subtwistor bundle with radical of rank 2 is nontrivial. Moreover,
Corollary 2.6 yields

Corollary 5.5. The four-dimensional sphere does not admit subtwistor structures with radical
of rank 2.

Note that we described all possible types of the subtwistor bundle over S4. Observe that S4 is
a homogeneous space without any subtwistor structures. Further we will consider conditions under
which there can exist some invariant subtwistor structures on a homogeneous space.
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§ 6. Invariant Subtwistor Structures on Homogeneous Spaces
Let M = G/H be a homogeneous space of dimension ≥ 3, where G is a Lie group acting transitively

and effectively onM , while H is the isotropy subgroup of the origin point o ∈M . Let g be the Lie algebra
of the Lie group G and let h be the isotropy subalgebra of g. In g, we can choose the complementary
subspace m : g = m⊕h. The subspace m is isomorphic to the tangent space ToM . Let π be the projection
G → M . Then τ = dπe, with e the unity of G, is an isomorphism m → ToM . A subtwistor structure
(Ω, D,Φ, β) on a homogeneous spaceM is called G-invariant if D is a G-invariant distribution of tangent
subspaces on M , and for every g ∈ G we have Ωo = Ωx ◦ dg, βo = βx ◦ dg, and Φx ◦ dg = dg ◦ Φo;
here x = g(o), while dg is the differential of g : M → M . A subtwistor structure on a Lie group G is
called left-invariant (right-invariant) if it is invariant under left (right) translations by elements of G. A
left-invariant (right-invariant) subtwistor structure on a Lie group G is called isotropic-degenerated if its
radical contains the isotropy subalgebra h. We proved in [1] that the set of all G-invariant subtwistor
structures on a homogeneous space M = G/H is in a one-to-one correspondence with the set of all
G-left-invariant H-right-invariant isotropic-degenerated subtwistor structures on the Lie group G. Thus,
the existence on a Lie group G of a G-left-invariant H-right-invariant isotropic-degenerated subtwistor
structure with radical of rank r implies the existence of a G-invariant subtwistor structure with radical
of rank r on M and vice versa. The definition of G-invariant subtwistor structure implies that such
subtwistor structure is completely determined by its value at the origin point o. Proposition 4.2 yields

Proposition 6.1. Let M = G/H be a homogeneous space of dimension n ≥ 3. The set of all G-
invariant subtwistor structures with radical of rank r = n−2k onM is isomorphic to gr2k×SO(2k)/U(k)
× SM(r), where gr2k is the 2k-Grassmannian in Rn, while SM(r) is the set of all nondegenerate positive-
defined symmetric r × r-matrices.
This assumption implies that the subtwistor subbundle ofG-invariant subtwistor structures over a ho-

mogeneous space is trivial even if the subtwistor bundle itself is nontrivial. However, the subbundle of all
G-invariant subtwistor bundles over a homogeneous space can be empty.

Theorem 6.2. Let M = G/H be a homogeneous space of dimension ≥ 3. If the isotropy rep-
resentation acts irreducibly on ToM then M does not admit G-invariant subtwistor structures with
nontrivial radical.

Proof. Suppose that M admits a G-invariant subtwistor structure (Ω, D,Φ, β) with nontrivial rad-
ical. Since the work bundle D is a G-invariant distribution on M and dh is an automorphism of the
tangent space ToM for every h ∈ H, we infer that dh is an automorphism of Do for all h ∈ H. Thus,
Do is a nontrivial invariant subspace for the isotropy action, which contradicts the irreducibility of the
isotropy action on ToM .

Remark 6.3. Theorem 2.2 implies that there are no G-invariant skew-symmetric 2-forms with trivial
radical on a homogeneous space G/H of odd dimension. Reckoning with Theorem 6.2, we conclude that
a homogeneous space of odd dimension with an irreducible action of the isotropy representation admits
no subtwistor structures.

It is known that there are no symplectic structures for n ≥ 3 on the sphere Sn (see [10]). Let us
extend this fact to all subtwistor structures with closed fundamental 2-form.

Theorem 6.4. The sphere Sn, n ≥ 3, admits no subtwistor structures with closed fundamental
2-form and hence no sub-Kähler structures.

Proof. The sphere Sn can always be presented as a homogeneous Riemannian space G/H with
irreducible isotropy action (see [7]). Suppose that Sn has a subtwistor structure (Ω, D,Φ, β): dΩ = 0.
The value of this subtwistor structure at the origin point o induces the left-invariant isotropic-degenerated
subtwistor structure (Ωo ◦ τ, τ−1(Do), τ−1 ◦Φo ◦ τ, β ◦ τ) on the Lie group G. Since the isotropy subgroup
of a homogeneous Riemannian space is compact, applying the averaging operation over the subgroup H
(integration with respect to the unimodular measure) to this subtwistor structure, we obtain the G-left-
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invariant H-right-invariant isotropic-degenerated subtwistor structure on the Lie group G with radical
of rank at least radΩ. The so-obtained subtwistor structure on the Lie group G induces a G-invariant
subtwistor structure on M with closed fundamental 2-form Ω′. Since Sn has trivial second cohomology
group H2(Sn, z), on Sn there is a nonzero G-invariant 1-form α′: dα′ = Ω′. On the other hand, we proved
in [3] that the sphere Sn, n ≥ 2, admits no nonzero G-invariant 1-forms. The so-obtained contradiction
proves that Sn admits no subtwistor structures with closed fundamental 2-form.

Since Sn is a homogeneous space with an irreducible action of the isotropy subgroup (see [7]),
Theorem 6.2 yields

Corollary 6.5. The sphere Sn, n ≥ 3, admits no invariant subtwistor structures with nontrivial
radical.

If the isotropy subgroup H of a homogeneous space M = G/H is a normal subgroup in G then G/H
is the quotient Lie group. Since each Lie group is a parallelizable manifold, Proposition 4.5 gives a class
of parallelizable manifolds admitting a G-invariant subtwistor structure.

Corollary 6.6. Let M = G/H be a homogeneous space of dimension n ≥ 3 and let H be a normal
subgroup in G. Then the subtwistor bundle over M is trivial and each subtwistor structure in Rn

generates a G-invariant subtwistor structure on M .

Let X be a vector field on a homogeneous space M = G/H. We call a vector field X equivariant
if dg−1X(g(o)) = X(o) for all g ∈ G. Note that the mapping τ is a homomorphism of the Lie bracket
of elements in the subspace m and the Lie bracket of equivariant vector fields on M . Let g′ = [g, g] be
the first derived ideal of the Lie algebra g.

Proposition 6.7. Suppose that M = G/H is a homogeneous Riemannian space of dimension ≥ 3,
the Lie algebra g has nontrivial center c, and p = m ∩ c ∩ g′ �= {0}. Then each element of p generates
a G-invariant subtwistor structure with closed fundamental 2-form on M .

Proof. For a homogeneous Riemannian space M = G/H, the group G is the isometry group of the
Riemannian metric B on M ; i.e., the metric B is a G-invariant bilinear form. Let ξ be an equivariant
vector field on M . This ξ generates the nonzero 1-form α on M : α(X) = B(ξ,X), X ∈ C1(TM). Put
x = g(o), g ∈ G. For every vector field X on M , we have

αx(dgX) = Bx(ξ, dgX) = Bo(dg
−1ξ,X) = Bo(ξ,X) = αo(X);

i.e., α is G-invariant. Then dα is a G-invariant skew-symmetric closed 2-form on M . If τ−1(ξ) ∈ g′ \ {0}
then there are X,Y ∈ g such that τ−1(ξ) = [X,Y ]. Then

2 dα(τX, τY ) = −α([τX, τY ]) = −B(ξ, τ [X,Y ]) = −B(ξ, ξ) �= 0,
i.e., dα �≡ 0.
Let D be the orthogonal complement to rad(dα) with respect to the metric B. In [3], we proved

that D is a G-invariant distribution on M . Each complex structure J in the fibers of D orthogonal with
respect to the metric B such that dα(X,Y ) = B(JX, Y ) for all X,Y ∈ C1(D) generates a G-invariant
affinor Φ associated with dα. We have obtained a G-invariant subtwistor structure (dα,D,Φ, β), where β
is the radical metric obtained by restricting B to rad(dα). It remains to prove that each nonzero element
in p generates an equivariant vector field on M .
Take X ∈ p \ {0} and let Gt be the one-parameter subgroup generated by X. Denote by X∗ the

vector field on M such that X∗(x) = d
dt |t=0Gt(x) for every x ∈ M . Since Gt lies in the center of G,

for every g ∈ G we have

dg−1X∗(g(o)) =
d

dt

∣
∣
∣
∣
t=0

g−1Gtg(o) =
d

dt

∣
∣
∣
∣
t=0

Gt(o) = X
∗(o).

Thus, X∗ is an equivariant vector field on M generating a G-invariant closed 1-form on M .
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Proposition 6.7 enables us to obtain a class of homogeneous spaces with invariant subtwistor struc-
ture. Since every nilpotent Lie group has nontrivial center and, given a compact subgroup H, we can
construct an H-bi-invariant Riemannian metric (see [7]) for the homogeneous space M = G/H, where G
is a nilpotent Lie group, while H is a proper compact subgroup in G transversal to the center of G;
therefore, we can construct a G-invariant subtwistor structure with exact fundamental 2-form. More-
over, an invariant subtwistor structure with exact fundamental 2-form on a homogeneous space can be
obtained directly from an invariant affinor metric structure provided that a 1-form is considered instead
of a fundamental 2-form; these structures are studied in [3]. Note that if a homogeneous spaceM = G/H
admits a G-invariant subtwistor structure andM is a compact manifold without boundary then this sub-
twistor structure has radical of nonzero rank because every exact skew-symmetric 2-form on a compact
orientable manifold without boundary is degenerate. Theorem 2.2 also implies that if a homogeneous
space of odd dimension admits an invariant subtwistor structure then this structure has radical of di-
mension ≥ 1. The semidirect product of a symplectic Lie group and a commutative Lie group provides
an easy example of a Lie group with left-invariant subtwistor structure having closed fundamental 2-form
and a nontrivial radical.

Remark 6.8. If a Lie group G contains a proper subgroup H of even codimension and admits
a G-left-invariant H-right-invariant subtwistor structure with closed fundamental 2-form and radical
coinciding with the isotropy subalgebra h then this subtwistor structure induces a G-invariant almost
Kähler structure on the homogeneous space M = G/H. In the case that the torsion tensor of this
subtwistor structure is equal to zero, this tensor induces a G-invariant Kähler structure on M .
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