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THE BUNDLE OF PARACOMPLEX STRUCTURES
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Abstract: Under consideration are the bundle of paracomplex structures and the related problems of
the existence of a paracomplex structure on a manifold. We obtain some explicit descriptions for the
bundle of paracomplex structures for spheres of dimensions 2, 4, and 6. The existence is proved of
a nonitegrable almost paracomplex structure on the six-dimensional sphere.
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§ 1. Introduction
An almost paracomplex structure on a manifold M of dimension 2n is a continuous field of auto-

morphisms of the tangent spaces whose square is the identity operator and whose eigensubspaces have
dimension n. The notion of almost paracomplex structure is a special case of the notion of almost product
structure and is an antipode to the notion of almost complex structure on a manifold. For paracomplex
and para-Kähler structures, there are results and objects analogous to the notions for almost complex
structures such as integrability, the fundamental 2-form, the associated metric, etc. The most com-
plete relevant information is presented in [1, 2]. For the bundle of complex structures, there are many
known results and descriptions. But there is rather scarce information for the bundle of paracomplex
structures. In this paper, we define and describe in detail the bundle of paracomplex structures. In
particular, we show the relationship between the bundle of orthogonal paracomplex structures and the
Grassmann bundle and describe the structure of the bundle of orthogonal paracomplex structures for
even-dimensional spheres of dimensions 2, 4, and 6. Since an almost paracomplex structure on a man-
ifold M can be viewed as a global section of the bundle of paracomplex structures on M , the question
of the existence of an almost paracomplex structure on a manifold is often reduced to the problem of the
existence of a global section of the bundle of paracomplex structures. Using this approach, we show that,
on the four-dimensional sphere, there does not even exist a nonintegrable almost paracomplex structure,
and the six-dimensional sphere admits a nonintegrable almost paracomplex structure.

Note that some almost paracomplex structures were obtained for the six-dimensional pseudo-Euclid-
ean pseudosphere in space in [3]. In this paper, we prove the existence of nonintegrable almost paracom-
plex structures on the standard six-dimensional sphere in the Euclidean space.

In Section 2, we give a definition of an almost paracomplex structure and give necessary information
on almost paracomplex structures. In Section 3, we give the definition of the bundle of orthogonal
paracomplex structures and prove the relationship between this bundle and the Grassmann bundle.
In Section 4, we describe the bundle of orthogonal paracomplex structures over the four-dimensional
sphere and prove that this bundle admits no global sections. In Section 5, we prove the existence on the
six-dimensional sphere in the Euclidean space of a nonintegrable almost paracomplex structure with the
use of a 3-form with nontrivial radical by analogy with the way it was done in [4] for defining the notion
of subtwistor and sub-Kähler structures with degenerate fundamental 2-form.

Note that, while in [3], the explicit form is given of almost paracomplex structures for six-dimensional
pseudospheres, in the article we only prove the existence of a paracomplex structure on the standard six-
dimensional sphere but there is no way to simply and explicitly describe this paracomplex structure.
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§ 2. Almost Paracomplex Structures
Let V be a vector space of dimension 2n over the field of reals. Let Φ be a nondegenerate linear

operator in V such that Φ2 = id, where id is the identity operator. The condition Φ2 = id implies that Φ
can have two eigenvalues: ±1. Denote by V+ and V− the eigenspaces corresponding to the eigenvalues 1
and −1. If dim(V+) = dim(V−) = n then Φ is called a paracomplex structure on V . The simplest example
of a paracomplex structure is given by a linear operator in V having in a fixed basis the matrix(

idn 0
0 − idn

)
.

If M is a smooth manifold of dimension 2n; then for each x ∈ M there is a paracomplex structure in
the tangent space TxM and TxM = V+(x) ⊕ V−(x), where V+(x) and V−(x) are the eigenspaces of the
paracomplex structure in TxM .

Definition 2.1. An almost paracomplex structure on a real manifold M of dimension 2n is a con-
tinuous field Φ of automorphisms of the tangent spaces on M such that Φ2 = id, while the distributions
of the eigenspaces V+ and V− are continuous distributions of rank n on M .
Remark 2.2. An almost paracomplex structure on a manifold M is a particular case of an almost

product structure. An almost product structure on M is a continuous field of automorphisms of the
tangent spaces on M whose square is the field of identity operators and whose distributions of the
eigenspaces V+, V− : TM = V+ ⊕ V− have arbitrary rank.
An almost para-Hermitian structure on a manifold M of dimension 2n is a pair (Φ, h), where h is

a pseudo-Riemannian metric of signature (n, n) on M , while Φ is a paracomplex structure on M and
h◦Φ = −h. The eigenspaces V+(x) and V−(x) of an almost para-Hermitian structure at any point x ∈M
are isotropic subspaces in TxM .

Remark 2.3. Using a partition of unity, we can always construct a pseudo-Riemannian metric
of signature (n, n) on each paracompact manifold of dimension 2n. If q is such a pseudo-Riemannian
metric then each almost paracomplex structure Φ on M together with the pseudo-Riemannian metric
h(X,Y ) = q(X,Y )−q(ΦX,ΦY ), X,Y ∈ C1(TM), constitutes an almost para-Hermitian structure onM .
Let M be a Riemannian manifold with Riemannian metric g. An almost paracomplex structure Φ

on M is called orthogonal if g ◦ Φ = g. For an orthogonal almost complex structure, the distributions
of the eigenspaces V+ and V− are orthogonal with respect to g. Note that if an almost paracomplex
structure Φ is not orthogonal with respect to g then Φ is orthogonal with respect to the metric h;
i.e., h(X,Y ) = g(X,Y ) + g(ΦX,ΦY ), X,Y ∈ C1(TM). Thus, every almost paracomplex structure
on a Riemannian manifold is always orthogonal with respect to some Riemannian metric.
The torsion tensor of an almost paracomplex structure Φ on a manifold M is the tensor field N

of type (2, 1) such that, for all vector fields X and Y on M ,

N(X,Y ) = [ΦX,ΦY ]− Φ[ΦX,Y ]− Φ[X,ΦY ] + [X,Y ], (1)

where [·, ·] stands for the Lie bracket of vector fields on M . This tensor is an analog of the Nijenhuis
tensor for almost paracomplex structures.
In each coordinate neighborhood U with local coordinates (x1, . . . , xn, y1, . . . , yn) on every real man-

ifold of dimension 2n, there exists a local almost paracomplex structure Φ|U :
Φ

∂

∂xk
=

∂

∂xk
, Φ

∂

∂yl
= − ∂

∂yl
, (2)

where ∂
∂xk
and ∂

∂yl
are local vector fields acting on every smooth function f as the partial derivatives of f

with respect to the coordinates xk and yl. But conversely it is not always that for an almost paracomplex
structure Φ on a manifoldM there exist local coordinates (x1, . . . , xn, y1, . . . , yn) for which (2) is fulfilled.
An almost paracomplex structure on a manifold M is called integrable, or paracomplex, if, for any point
x ∈M , there exists a coordinate neighborhood in which (2) is fulfilled. The following integrability criteria
were obtained for almost paracomplex structures (see [1, 2]):
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Theorem 2.4. Let Φ be an almost paracomplex structure on a smooth real manifold M of dimen-
sion 2n and let N be the torsion tensor of Φ. Then the following are equivalent:
(1) Φ is an integrable almost paracomplex structure on M ;
(2) the distributions of the eigenspaces V+ and V− are involutive;
(3) N = 0 on M .

Let M and N be smooth real manifolds of the same dimension. The manifold M ×N always admits
an almost paracomplex structure Φ; i.e., Φx = X|X∈C1(TM) and ΦX = −X|X∈C1(TN). Theorem 2.4
implies that this almost paracomplex structure is integrable. Thus, we conclude that there always exists
an integrable almost paracomplex structure on a direct product of smooth manifolds. In particular, some
integrable paracomplex structure exists on Sn × Sn, n ≥ 1, where Sn is the n-dimensional unit sphere.
Conversely, we can prove the following (see [1, 2]):

Theorem 2.5. Let M be a smooth real manifold of dimension 2n. If M admits an integrable
almost paracomplex structure thenM is locally diffeomorphic to the direct product of two n-dimensional
submanifolds.

Remark 2.6. An almost paracomplex structure is often called integrable if its distributions of
eigenspaces are involutive. Theorem 2.4 implies that this definition is equivalent to the above-given
definition of integrability of an almost paracomplex structure.

§ 3. The Bundle of Paracomplex Structures
In this section, we define the notion of bundle of paracomplex structures over an even-dimensional

manifold and its relationship with the Grassmann bundle.
Let M be a smooth real manifold of dimension 2n with Riemannian metric g. For each point x ∈M ,

the tangent space TxM is a vector space of dimension 2n with the inner product induced by the Rie-
mannian metric g. Denote by Ox(M) the set of all orthogonal paracomplex structures in TxM . The
eigenspaces V+(x): Φx|V+(x) = id and V−(x): Φx|V−(x) = − id are defined for every orthogonal para-
complex structure Φx in TxM . Since V+(x) and V−(x) are orthogonal and TxM = V+(x) ⊕ V−(x), the
paracomplex structure Φx is completely determined by the choice of one of these subspaces. For every
n-dimensional subspaceD(x) ⊂ TxM , there exists a unique orthogonal complementD⊥(x). With the sub-
space D(x), we can associate the two paracomplex structures; namely, Φx: Φx|D(x) = id, Φx|D⊥(x) = − id,
and −Φx: −Φx|D(x) = − id, −Φx|D⊥(x) = id. Observe that, for n even, the paracomplex structure ±Φx
preserves orientation in TxM ; and for n odd, it changes orientation in TxM . Thus, we obtain

Proposition 3.1. Let M be a real smooth manifold of dimension 2n. For every point x ∈ M , the
space Ox(M) is a trivial two-sheeted covering of the n-Grassmannian in R2n.

Denote by O(M) the bundle over a smooth real manifold M of even dimension for which there
exists a smooth function π : O(M) → M such that π−1(x) = Ox(M) for every x ∈ M . We will refer
to this bundle as the bundle of orthogonal paracomplex structures. Since each paracompact manifold
admits a Riemannian metric (see [5, 6]), the bundle of orthogonal paracomplex structures exists for every
paracompact manifold. Thus, an almost paracomplex structure on a paracompact manifold M can be
defined as a global section of O(M). Here we take into account the result of Section 2: for every almost
paracomplex structure on a Riemannian manifold, there exists a Riemannian metric with respect to which
this paracomplex structure is orthogonal.
Denote by grk the k-Grassmannian in Rn and designate as grk(M) the k-Grassmann bundle over

a manifold M . Proposition 3.1 yields

Corollary 3.2. The bundle of orthogonal paracomplex structures over a Riemannian manifold M
of dimension 2n is a trivial two-sheeted covering of grn(M).

Since an almost paracomplex structure on a paracompact manifold M is a global section of O(M),
Corollary 3.2 gives a criterion for the existence of an almost paracomplex structure.
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Proposition 3.3. A paracompact manifold M of dimension 2n admits an almost paracomplex
structure if and only if M admits a global section of grn(M).

Let O(k) be the orthogonal group of the Euclidean space Rk and let U(k) be the unitary group of the
Hermitian space Ck. Since O(n) acts transitively on the k-Grassmannian in the Euclidean space Rn and

the isotropy subgroup of a fixed k-dimensional subspace in Rn consists of the block matrices

(
A 0
0 B

)
,

where A ∈ O(k) and B ∈ O(n − k), we conclude that grk ∼= O(n)/(O(k) × O(n − k)) and dim(grk) =
k(n − k). Since, for a Riemannian manifold M of dimension 2n, the fiber of O(M) is a two-sheeted
covering of the n-Grassmannian in R2n, we have

Proposition 3.4. Let O(M) be the bundle of orthogonal paracomplex structures over a Riemannian
manifold M of dimension 2n with projection π : O(M) → M . Then π−1(x) is a trivial two-sheeted
covering of the Grassmannian grn ∼= O(2n)/(O(n)×O(n)) and dim(π−1(x)) = n2 for every point x ∈M .
A manifoldM of dimension n is called parallelizable if there is a global n-frame onM . A parallelizable

manifold always admits a Riemannian metric with respect to which a global n-frame onM is orthonormal.
The existence of an almost paracomplex structure on a parallelizable manifold M is equivalent to the
triviality of O(M).

Theorem 3.5. A real parallelizable manifold M of dimension 2n admits an almost paracomplex
structure if and only if the bundle O(M) of orthogonal paracomplex structures over M is trivial.

Proof. Suppose that M admits an almost paracomplex structure Φ. The almost paracomplex
structure Φ defines onM a pair of distributions of n-dimensional tangent spaces D+: Φ|D+ = id and D−:
Φ|D− = − id. The distribution D+ is a global section of grn(M). Proposition 3.4 implies that the n-
Grassmannian in TxM is diffeomorphic to O(2n)/(O(n)×O(n)) for every x ∈ M . We will assume that
Z2 = ±1. Let x ∈ M and A ∈ O(2n)/(O(n) × O(n)). Since M is parallelizable, on M there exists
a global 2n-frame u. The frame u defines an isomorphism R2n → TxM at every point x ∈ M . Put
A(v) = u ◦ A ◦ u−1(v), v ∈ TxM . It follows that f : f(x,A, 1) = A(D+(x)), f(x,A,−1) = A(D−(x)) is
an isomorphism of the bundles M ×O(2n)/(O(n)×O(n))× Z2 and O(M); i.e., O(M) is trivial.

Since each trivial bundle admits a standard global section; if O(M) is trivial, from Proposition 3.3
we conclude that M admits an almost paracomplex structure. �
Let M be a paracompact manifold of dimension n and let wk(M) be the kth Stiefel–Whitney class

of M . The Stiefel–Whitney classes give a necessary condition for the existence of a global k-frame,
1 ≤ k ≤ n, on a manifold (see [7]).
Proposition 3.6. Let M be a paracompact manifold of dimension n ≥ 2. If M admits k vector

fields linearly independent at every point then wn−i+1(M) = 0 for all i : k ≤ i ≤ n+ 1.
Consider the two-dimensional unit sphere S2 in the Euclidean space R3. A global section s(x)

of the 1-Grassmann bundle on S2 induces a vector field V (x) on S2, where V (x) is a unit tangent
vector generating a tangent straight line s(x) at x. The vector field V (x) no vanishes totally on S2.
Since the second Stiefel–Whitney class w2(S

2) generates the second cohomology group H2(S2,Z2) ∼= Z2,
Propositions 3.3 and 3.6 imply that S2 admits no almost paracomplex structure.

Let g0 be the Riemannian metric on S
2 induced by the embedding of S2 in R3 and let P (2) be

the bundle of frames on S2 orthonormal with respect to g0. The space P (2) consists of ordered pairs
(e1, e2), e1, e2 ∈ C1(T (S2)). Let π1 be the projection P (2) → T (S2); i.e., π1(e1, e2) = e1, and let π2
be the projection of the tangent bundle T (S2) → S2. For every x ∈ S2 and every unit tangent vector
e1 ∈ Tx(S2) in Tx(S2), there exist only two unit orthogonal vectors±e2 orthogonal to e1. The orthonormal
frame (e1, e2) at x defines a unique orthogonal paracomplex structure Φx in Tx(S

2) such that Φxe1 = e1
and Φxe2 = −e2. Thus, the space P (2) together with the projection π1 is a two-sheeted covering of the
bundle gr1(S2); and, together with the projection π = π2 ◦ π1, is a bundle over S2. Thus, we have
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Theorem 3.7. The bundle of orthogonal paracomplex structures over the two-dimensional sphere S2

is isomorphic to the bundle of orthonormal frames over S2 and admits no global section.

Remark 3.8. For the two-dimensional sphere S2, the bundle O(S2) is a principal bundle with struc-
ture group O(2). This bundle admits reduction to a subbundle with the structure group SO(2). This
subbundle is isomorphic to T (S2). In other words, the tangent bundle over S2 is a subbundle of O(S2).

§ 4. The Bundle of Paracomplex Structures
over the Four-Dimensional Sphere

Here we describe the bundle of orthogonal paracomplex structures over the four-dimensional sphere S4.
It is known that there are no almost complex structures on S4 (see [4]), the bundle of orientation-
preserving orthogonal complex structures (the twistor bundle) on S4 is isomorphic to the complex pro-
jective space CP 3, and the bundle of all orthogonal complex structures on S4 is isomorphic to CP 3 ×Z2
(see [8]).
Consider the four-dimensional unit sphere S4 in the Euclidean space R5 with the standard Euclidean

metric. The sphere S4 can be identified with the set of pairs (q, a) : |q|2+ |a|2 = 1, where q is a quaternion
and a is a real.
Denote the space of ordered pairs of quaternions (q1, q2) by H

2. Assuming that the multiplicative
group of nonzero quaternions H∗ acts on H2 by homotheties, we conclude that the quaternionic projective
space HP 1 is diffeomorphic to (H2 \ {0})/H∗.
Define the following functions on H2 \ {0}:

f(q1, q2) = 2
q1q̄2

|q1|2 + |q2|2 , h(q1, q2) =
|q1|2 − |q2|2
|q1|2 + |q2|2 .

Since |f(q1, q2)|2 + |h(q1, q2)|2 = 1 for every (q1, q2) ∈ H2 \ {0}; therefore, π : H2 \ {0} → S4, π(q1, q2) =
(f(q1, q2), h(q1, q2)) ∈ R5, is a covering mapping H2 \ {0} → S4. Since π is invariant under multiplication
by nonzero quaternions, π is a diffeomorphism HP 1 → S4.
Let h0 be the quaternionic Fubini–Study metric on HP

1 (see [6]). Refer as an orthogonal subcomplex
structure at x ∈ HP 1 to a pair (D(x), J(x)), where D(x) is a two-dimensional real tangent subspace
in Tx(HP

1) and J(x) is a complex structure in the vector space D(x) orthogonal with respect to h0.
More detail on subcomplex structures can be found in [4]. Since a two-dimensional real vector space
always admits only two orthogonal complex structures (see [5, Chapter 9]), the set of all orthogonal
subcomplex structures at x can be identified with gr2×Z2, where gr2 is the 2-Grassmannian in R4.
Applying Corollary 3.2, we obtain

Proposition 4.1. The bundle O(S4) of orthogonal paracomplex structures over the four-dimensional
sphere S4 is isomorphic to the bundle gr2(HP 1) × Z2 of orthogonal subcomplex structures over HP 1
with fiber O(4)/(O(2)×O(2))× Z2.
Let us now prove that O(S4) admits no global sections.

Proposition 4.2. The bundle of orthogonal paracomplex structures over the four-dimensional
sphere admits no global sections.

Proof. Suppose that S4 admits an almost paracomplex structure Φ. Since every almost para-
complex structure on a Riemannian manifold is orthogonal with respect to some Riemannian metric
(see Section 2), we may assume that Φ is a global section of O(S4). Let D+ and D− be distribu-
tions of eigenspaces for the almost paracomplex structure Φ. We have rank(D+) = rank(D−) = 2,
T (S4) = D+ ⊕D−.
Let p(E) be the complete Pontryagin class of a vector bundle E and let pi(E) be the ith Pontryagin

class of E. Since D+ and D− are vector bundles of rank 2, p1(D+) = p1(D−) = 0. Using the properties
of the characteristic classes for the Whitney sum of vector bundles (see [7]), we obtain

1 + p1(T (S
4)) = p(T (S4)) = p(D+)� p(D−) = (1 + p1(D+))� (1 + p1(D−)) = 1,
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whence p1(T (S
4)) = 0. On the other hand, the first Pontryagin class of the four-dimensional sphere S4

generates the fourth cohomology group H4(S4,Z) ∼= Z, and hence cannot be zero. This proves that the
bundle O(S4) admits no global sections.

Remark 4.3. Since each trivial bundle admits a global section, Proposition 4.2 implies that the
bundle O(S4) is nontrivial.
Propositions 3.3 and 4.2 imply

Corollary 4.4. The four-dimensional sphere has no almost paracomplex structures.

Remark 4.5. Since the embedding of O(2)×O(2) into the group O(4) is not a subgroup in SO(4),
there is no reduction of O(S4) to a subbundle with fiber SO(4)/(O(2)×O(2))× Z2.
The embedding of SO(2)×SO(2) into the group SO(4) is a subgroup in SO(4). Identify the Euclidean

space R4 with the quaternionic space H and the Euclidean metric in R4, with the metric g0 in H, where
g0(x, y) = Re(xȳ), x, y ∈ H. Let A(q1, q2) be the linear mapping H → H such that A(q1, q2)x = q1xq̄2,
|q1| = |q2| = 1, for every x ∈ H. It is easy to check that A(q1, q2) preserves g0; i.e., A(q1, q2) is
an orthogonal operator in H. The set of all these orthogonal operators constitutes a connected Lie group
with respect to composition which is isomorphic to SO(4). Note that A(−q1,−q2) = A(q1, q2) implying
that SO(4) ∼= (S3 × S3)/± 1. Assume that S1 × S1 acts on S3 × S3 as follows:

(a, b)(q1, q2) = (aq1, bq2), (a, b) ∈ C2, |a| = |b| = 1, (q1, q2) ∈ H2, |q1| = |q2| = 1.
Since SO(2) ∼= S1, S3/S1 ∼= CP 1, we have

SO(4)/(SO(2)× SO(2)) ∼= (S3 × S3)/(±1(S1 × S1))
∼= (S3 × S3)/(S1 × S1) ∼= (S3/S1)× (S3/S1) ∼= CP 1 × CP 1.

We now obtain

Proposition 4.6. The bundle O(S4) admits reduction to a subbundle with fiber CP 1 × CP 1.
Remark 4.7. Since CP 1 embeds diagonally in CP 1 × CP 1, the bundle O(S4) admits a reduction

to a subbundle with fiber CP 1. But this subbundle is not isomorphic to the twistor bundle over S4.

§ 5. Almost Paracomplex Structures on the Six-Dimensional Sphere
It is known that the six-dimensional sphere admits a nonintegrable almost complex structure (see [5,

Chapter 9]). Here we will prove that the six-dimensional sphere admits a nonintegrable almost para-
complex structure. By Remark 2.6, here we will call an almost paracomplex structure integrable if its
distributions of eigenspaces are involutive.
Let S6 be the six-dimensional sphere in R7. Identify R7 with a Clifford algebra over R4. This Clifford

algebra consists of the octonions h =
∑7
k=1 akik, where ak is a real, i

2
k = −1, ikil = −ilik, i1i2 = i3,

i1i4 = i5, i2i4 = i6, and i1i6 = i7. The conjugation of an octonion h is the octonion h̄ = −h, and the
multiplication of octonions is the Clifford algebra multiplication. Let g0 be the standard Euclidean metric
in R7. Given octonions x and y, we have g0(x, y) = Re(x · ȳ). Define the 3-form β(x, y, z) = g0(x · ȳ, z)
in R7 3-form. Denote by G2 the group of all orthogonal linear transformations in R

7 that preserve the
3-form β. It is known that G2 is a simple compact Lie group of dimension 14. We have

S6 = {h ∈ R7 : g0(h, h) = 1}.
The group G2 acts transitively on S

6, and the isotropy subgroup of i4 is isomorphic to SU(3) (see [5, 6]).
Thus, S6 is the homogeneous space G2/SU(3).
Let M = G/H be a real homogeneous Riemannian space of dimension 2n, where G is a group

of isometries acting transitively on M , while H is the isotropy subgroup of the origin point o ∈ M .
An almost paracomplex structure Φ on M is called G-invariant if Φx ◦ dg = dg ◦ Φo, x = g(o) for

692



every g ∈ G, where dg is the differential of g. Each G-invariant almost paracomplex structure on M is
uniquely determined by a pair of G-invariant distributions of n-dimensional subspaces D+ and D− onM ,
where Φ|D+ = id and Φ|D− = − id. For an orthogonal G-invariant almost paracomplex structure onM , it
suffices to define only the distribution D+ since D− can always be chosen as the orthogonal complement
to D+. Thus, the problem of obtaining a G-invariant orthogonal almost paracomplex structure on M
amounts to obtaining a G-invariant distribution of n-dimensional tangent subspaces on M .
A skew-symmetric p-form on a homogeneous Riemannian space M = G/H is called G-invariant if

Ω ◦ dg = Ω for all g ∈ G. Each G-left-invariant H-right-invariant p-form on a Lie group G induces
a G-invariant p-form on the homogeneous space M (see [6]).

Definition 5.1. The radical of a p-form Ω on a manifoldM is the distribution of tangent subspaces
radΩ = {X ∈ C1(TM) : IX Ω = 0}, where IX Ω designates the (p− 1)-form on M obtained by replacing
the first argument in the p-form Ω with the vector field X.

Theorem 5.2. A real homogeneous Riemannian space M = G/H of dimension 2n admits a G-
invariant almost paracomplex structure if and only if M has a G-invariant n-form with radical of rank n.

Proof. It suffices to show that there exists a G-invariant distribution of n-dimensional tangent
subspaces on M if and only if M has a G-invariant n-form with radical of rank n.
Let Ω be a G-invariant n-form on M and rank(radΩ) = n. Let D = radΩ. Show that D is

a G-invariant distribution of tangent subspaces on M .
Let o be the origin point of the homogeneous space M and v ∈ D(o). Since the n-form Ω is G-in-

variant, for every g ∈ G we have
Idg(v)Ω = Iv(Ω ◦ dg) = Iv Ω = 0;

i.e., dg(v) ∈ D(x) and x = g(o). Since dg is an isomorphism between ToM and TxM , x = g(o), we infer
that dg(D(o)) = D(x), x = g(o) for any g ∈ G.
Conversely, if D is a G-invariant distribution of n-dimensional tangent subspaces on M ; then, at the

origin point o, there exists a collection of independent 1-forms α1, . . . , αn such that

D(o) = {X ∈ ToM : α1(X) = 0, . . . , αn(X) = 0}.
Suppose that Ωo = α1 ∧ · · · ∧ αn and Ωx = Ωo ◦ dg−1 for any point x = g(o), g ∈ G. Let e1, . . . , e2n be
the dual basis for ToM ; i.e., αk(ek) = 1 and αk(el) = 0 for k �= l. We have en+1, . . . , e2n ∈ D(o). The
definition of exterior product of 1-forms and Definition 5.1 imply that Ωo(e1, . . . , en) = 1 and en+1, . . . , e2n
generate radΩo = D(o). Since the n-form Ω and the distributionD are G-invariant, D(x) = radΩx at any
point x ∈M .
Let H be a compact nontrivial Lie subgroup in a Lie group G, let g be the Lie algebra of G, let Λp(g)

be the space of all left-invariant skew-symmetric p-forms on the Lie algebra g, and let Adg, g ∈ G, be the
adjoined representation of an element g in the Lie algebra g (see [6]). Choose a left-invariant measure μ
on H and define the linear averaging operator SH : Λ

p(g) → Λp(g) over the subgroup H such that,
for every p-form Ω ∈ Λp(g),

SHΩ =

∫
H

(Ad∗xΩ)μx∫
H

μ
.

Proposition 5.3. Let H be a nontrivial compact connected Lie subgroup in a Lie group G and
Ω ∈ Λp(g). Then
(1) SHΩ is an H-bi-invariant p-form;
(2) if Ω is an H-bi-invariant p-form then SHΩ = Ω;
(3) if SHΩ �= 0 then rank(rad(SHΩ)) = rank(radΩ).
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Proof. Since every connected compact Lie group is unimodular (see [6]), H has a bi-invariant
measure μ; i.e., Ad∗h μ = μ for all h ∈ H. Let x ∈ H, h ∈ H, and y = hx. We have

Ad∗h(SHΩ) =

∫
H

(Ad∗h(Ad
∗
xΩ))μx∫

H

μ
=

∫
H

(Ad∗hxΩ)Ad
∗
h μhx∫

H

μ
=

∫
H

(Ad∗y Ω)μy∫
H

μ
= SHΩ.

This proves property (1).
The Integral Mean Value Theorem implies that there is h0 ∈ H such that∫

H

(Ad∗xΩ)μx = Ad
∗
h0
Ω

∫
H

μ.

Hence, SHΩ = Ad
∗
h0
Ω. If a p-form Ω is H-bi-invariant then Ad∗h0 Ω = Ω. If SHΩ �= 0 then, since Adh0 is

an automorphism of the Lie algebra g, we have rad(Ad∗h0 Ω) = Ad
−1
h0
(radΩ). This proves properties (2)

and (3).

The tangent space Tx(S
6) at x ∈ S6 is isomorphic to the set of imaginary octonions y ∈ R7 :

g0(y, x) = 0. Note that x · x̄ = g0(x, x) = 1 for any x ∈ S6 and ȳ = −y for all y ∈ R7. Define a continuous
field of linear operators J0(x)y, x ∈ S6, y ∈ Tx(S6) on S6 such that J0(x)y = x · ȳ. For any y ∈ Tx(S6),
we have

g0(J0(x)y, x) = g0(x · ȳ, x) = −g0(x · y, x) = −Re(x · y · x̄) = −Re(x · ȳ · x̄) = −g0(J0(x)y, x),
Hence, g0(J0(x)y, x) = 0, i.e., J0(x)y ∈ Tx(S6). Since Tx(S6) is isomorphic to the subspace of imaginary
octonions, (x · ȳ) = −x · ȳ. Furthermore,

J20 (x)y = x · (x · ȳ) = −x · x · ȳ = −(x̄ · x) · y = −y,
g0(J0(x)y, J0(x)y) = Re(x · ȳ · (x · ȳ)) = (x · x̄)(ȳ · y) = g0(y, y).

Thus, J0 is a G2-invariant almost complex structure on S
6 orthogonal with respect to the Euclidean

metric g0. The fundamental 2-form Θ of the almost Hermitian structure (J0, g0) is a G2-invariant non-
degenerate skew-symmetric 2-form on S6, whereas dΘ is a G2-invariant 3-form on S

6.
The Lie algebra g2 of G2 admits an H-bi-invariant inner product, where H = SU(3) (see [6]), and g2

splits into the direct sum m⊕h, where h is the Lie algebra of SU(3), while m is the orthogonal complement
to the subalgebra h. The subspace m is AdH -invariant. It follows that the set of all G2-invariant 3-forms
on S6 is in one-to-one correspondence with the set of G2-left-invariant H-right-invariant 3-forms on the
subspace m. In particular, the 3-form dΘ generates an H-bi-invariant 3-form η : dΘ = η ◦ dπ|m on the
subspace m, where π is the projection G2 → S6. Proposition 5.3 implies that SHη = η.

Proposition 5.4. The subspace m admits an H-bi-invariant 3-form Ω, H = SU(3), such that
SHΩ �= 0 and rank(radΩ) = 3.
Proof. Let θ1, . . . , θ6 be a left-invariant basis for m

∗. Then the 3-forms αijk = θi ∧ θj ∧ θk, i <
j < k ≤ 6, constitute a left-invariant basis of Λ3(m). Since η ∈ Λ3(m), there exist coefficients aijk,
i < j < k ≤ 6, such that

η =
∑
i<j<k

aijkαijk.

Since the subgroup H = SU(3) is a compact connected Lie group, Proposition 5.3 implies that

∑
i<j<k

aijkSHαijk = SHη = η.
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This implies the existence of at least one collection of the indices i, j, and k for which SHαijk �= 0. Without
loss of generality, we may assume that i = 1, j = 2, k = 3. It is easy to see that rank(radα123) = 3.
From Proposition 5.3 we obtain that the 3-form Ω = SHα123 is an H-bi-invariant 3-form on m and
rank(radΩ) = 3.

Since each H-bi-invariant 3-form on the subspace m induces a G2-invariant 3-form on S
6, Theo-

rem 5.2 and Proposition 5.4 imply that the sphere S6 admits a G2-invariant almost paracomplex struc-
ture generated by the almost complex structure on S6. Denote this almost paracomplex structure by Φ0.
In Section 2, we introduced the notion of an integrable almost paracomplex structure. Prove that the
almost paracomplex structure Φ0 is nonintegrable.

Theorem 5.5. LetM = G/H be a homogeneous Riemannian space of dimension 6, let G be a simple
Lie group acting transitively on M , and let H be a compact connected isotropy subgroup of the origin
point o. Each G-invariant 3-form on M with radical of rank 3 generates a nonintegrable G-invariant
almost paracomplex structure on M .

Proof. Let Ω be a G-invariant 3-form onM such that rank(radΩ) = 3. By Theorem 5.2, the 3-form
Ω defines a G-invariant almost paracomplex structure Φ on M . Suppose that the almost paracomplex
structure Φ is integrable. Then the distributions of the eigensubspaces D+ and D− on M are involutive.
Let g be the Lie algebra of the Lie group G, let h be the Lie algebra of the isotropy subgroup H, and

let m be the orthogonal complement to h with respect to the H-bi-invariant inner product in g. Let M
be an AdH -invariant subspace and let [m, h] ⊆ m.
Let π be the projection G → M . Since ToM = D+(o) ⊕ D−(o) and dπ is an isomorphism m →

ToM , there are subalgebras m+ = dπ−1D+(o) and m− = dπ−1D−(o) in m such that m = m+ ⊕ m−.
By Theorem 2.5, the space M is diffeomorphic to the direct product of two subspaces M+; i.e., TM+ =
D+|M+ and M− : TM− = D−|M− . It follows that the Lie bracket of the subalgebras m+ and m− is equal
to zero. We conclude that m is a subalgebra in g. The decomposition g = m⊕ h implies

[g,m] = [m,m]⊕ [h;m] ⊆ m;

i.e., m is an ideal in g. Since the Lie algebra g is simple, in g there can be no nontrivial ideals. Thus, the
almost paracomplex structure Φ cannot be integrable.

Since the group G2 is simple, Theorem 5.5 implies that the above-obtained almost paracomplex
structure Φ0 on S

6 is nonintegrable. Moreover, the proof of Theorem 5.5 implies that every G2-invariant
paracomplex structure on S6 is nonintegrable.
The almost paracomplex structure Φ0 is a global section of the bundle O(S6) of orthogonal para-

complex structures over S6. Applying Corollary 3.2, we obtain

Corollary 5.6. The bundle O(S6) of orthogonal paracomplex structures over the six-dimensional
sphere is isomorphic to the bundle gr3(S6)× Z2, where gr3(S6) is the 3-Grassmann bundle over S6, and
admits a global section.

An almost product structure of type (p, q) on a real manifold M of dimension n is a continuous
field ψ of automorphisms of tangent spaces such that ψ2 = id, rank(D+) = p, and rank(D−) = q,
p + q = n, where D+ is the distribution of the eigenspaces for the eigenvalue 1, D− is the distribution
of the eigenspaces for the eigenvalue −1. An almost paracomplex structure onM is an almost product of
type (p, p). Using the fundamental 2-form of the above-obtained Hermitian structure on S6, in the same
way as in constructing a G2-invariant almost paracomplex structure on S

6, we can obtain a G2-invariant
skew-symmetric 2-form Ω on S6: rank(radΩ) = 4. Putting D+ = radΩ and D− = (radΩ)⊥, we obtain
a g2-invariant almost product structure of type (4, 2) on S

6. Putting D+ = (radΩ)
⊥ and D− = radΩ, we

obtain a G2-invariant almost product structure of type (2, 4) on S
6. Both these almost product structures

are nonintegrable, i.e., the distributions D+ and D− are noninvolutive. Since every vector field on S6
vanishes at least at one point, S6 admits no almost product structures of type (1, 5) or (5, 1).
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