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Abstract: We describe some method for obtaining families of complex and paracomplex structures on
real manifolds by using degenerate skew-symmetric multilinear forms. To construct these structures, we
employ a skew-symmetric form with nontrivial radical and obtain a family of almost complex structures
on the six-dimensional sphere different from the Cayley structure and families of Hermitian and para-
Hermitian structures on some six-dimensional manifolds.
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1. Introduction

The problem of constructing a complex structure, a Hermitian structure, or a Kähler structure is well
known for real manifolds of even dimension. This structure makes it possible to define complex coordinates
and a Hermitian metric on a real manifold. A Hermitian structure on a real manifold M of dimension 2n
is a pair (J, h), where h is a Riemannian metric on M and J is a complex structure on M preserving h.
There are well known examples both of manifolds admitting or lacking a Hermitian structure. The notion
of a para-Hermitian structure was introduced later on real manifolds of dimension 2n with a pseudo-
Riemannian metric . A para-Hermitian structure on a real manifold M of dimension 2n is a pair (Φ, g),
where g is a pseudo-Riemannian metric of signature (n, n) on M and Φ is a paracomplex structure
on M such that g ◦ Φ = −g. Some survey of the available properties and results for para-Hermitian
structures can be found in [1, 2]. As regards, Hermitian and para-Hermitian structures, the notion is
defined of a fundamental 2-form which is a nondegenerate skew-symmetric bilinear form on the manifold.
Hermitian and para-Hermitian structures with closed fundamental form are called Kähler (para-Kähler)
structures. In [3, 4], the notions of a complex structure, a Kähler structure, and a contact structure were
generalized for degenerate 1- and 2-forms on real manifolds of any dimension or vector bundles. These are
subtwistor structures, sub-Kähler structures, and affinor metric structures. In [5], some method is given
for constructing an almost complex structure on six-dimensional manifolds by means of a nondegenerate
skew-symmetric 3-form but [5] does not address the skew-symmetric 3-forms with nonzero degeneration
set which we will call the radical.

The main goal of the present article is to describe the method for constructing a Hermitian structure
or a para-Hermitian structure on a real manifoldM of dimension 2n using a degenerate skew-symmetric n-
form with radical of rank n onM . This method makes it possible to obtain Hermitian and para-Hermitian
structures on the manifolds where it was impossible to construct the structures by other methods. For
instance, it was shown in [6] that an almost complex structure on each six-dimensional manifold in the
seven-dimensional Euclidean space obtained by multiplying Cayley octaves is not integrable. In [7],
there were constructed integrable complex and paracomplex Cayley structures on six-dimensional pseu-
dospheres. However, it was not proved in [6, 7] that the six-dimensional sphere or a pseudosphere as well
as the six-dimensional product of spheres does not admit integrable almost complex structures different
from the Cayley structures. Using a degenerate skew-symmetric form on an even-dimensional manifold,
we obtain a family of almost Hermitian structures on the six-dimensional sphere different from the Cayley
structure and a family of Hermitian structures on the direct product of a two-dimensional sphere and
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a four-dimensional sphere. For constructing these families, we use the relationship between Hermitian
and para-Hermitian structures on a manifold M and degenerate multilinear forms which is described
in Section 4.

Section 2 contains the needed information and results from the theory of Hermitian and para-
Hermitian structures. In Section 3, we obtain and describe some results for the radical of a degener-
ate skew-symmetric multilinear form. In Section 4, we describe the relation between Hermitian (para-
Hermitian) structures and skew-symmetric multilinear forms with nontrivial radical. In Section 4, we
prove the main theorem, which states that the existence of a complex structure or a paracomplex struc-
ture on a manifold of dimension 2n is equivalent to the existence of a closed exterior n-form with radical
of rank n. In Section 5, we construct a family of almost complex structures on the six-dimensional sphere
different from the Cayley structure and give criteria for the integrability of the structures. It is also proved
in Section 5 that the six-dimensional sphere admits no almost paracomplex structures. In Section 6,
we study the existence of Hermitian and para-Hermitian structures on other six-dimensional manifolds.
In particular, we prove that on the direct product of the two-dimensional sphere and the four-dimensional
sphere, there is a family of Hermitian structures but there are no para-Hermitian structures.

2. Hermitian and Para-Hermitian Structures

In this section, we give the main notions and information from the theory of Hermitian and para-
Hermitian structures. The detailed surveys of results for Hermitian and para-Hermitian structures can
be found in [1, 2] and also in [8, Chapter 9].

Let M be a real manifold of class C∞ of dimension 2n, let h be a Riemannian metric on M , and let g
be a pseudo-Riemannian metric on M of signature (n, n). We will denote the tangent bundle over M
by TM and the cotangent bundle over M , by T ∗M . Refer as an almost complex structure on M to
a continuous field J of automorphisms of the tangent spaces on M such that J2 = − id, where id is the
field of identity linear operators in the fibers of the tangent bundle TM . An almost paracomplex structure
on M is a continuous field Φ of automorphisms of the tangent spaces on M such that Φ2 = id and the
rank of the subbundles of eigenspaces for the eigenvalues ±1 is equal to n. An almost Hermitian structure
on M is a pair (J, h), where J is an almost complex structure on M such that h ◦ J = h. An almost
para-Hermitian structure on M is a pair (Φ, g), where Φ is an almost paracomplex structure on M such
that g ◦ Φ = −g.

The complexification of a real vector space V is the complex vector space VC = V ⊗C. The complex
structure in the real vector space V has no eigenvalues but has two eigenvalues ±i, i =

√
−1 in the

complexified vector space VC. An almost complex structure defines a complex structure in the com-
plexification of the tangent space TxM , and an almost paracomplex structure defines a paracomplex
structure in the tangent space TxM at every x ∈ M . However, not all these structures admit complex
or paracomplex local coordinates consistent with the action of these structures on local vector fields.
An almost complex structure J is integrable or complex if for every x ∈ M there exist local real co-
ordinates (x1, . . . , xn, y1, . . . , yn) : ∂yk = J∂xk for all k = 1, 2, . . . , n, where ∂xk stand for the local

basis vector fields, acting at a smooth function f as ∂xk(f) = ∂f
∂xk

. Similarly we define the notion of

an integrable almost paracomplex structure called a paracomplex structure. An almost Hermitian struc-
ture (J, h) is Hermitian, and an almost para-Hermitian structure (Φ, g) is para-Hermitian if the almost
complex structure J or the almost paracomplex structure Φ is integrable.

A distribution D of tangent subspaces on a manifold M is regular if dim(D(x)) = const on M and
for every x ∈ M there exists an open neighborhood U such that in U there exists a continuous local basis
for D|U . An irregular distribution is a singular distribution.

Let (J, h) be an almost Hermitian structure on a manifold M . Consider the complex vector bundle
TCM = TM ⊗C. Since the almost complex structure J extends to TCM and has only the eigenvalues ±i,
i =

√
−1, we obtain TCM = V+ ⊕ V−, where V+ is the distribution of eigenspaces with eigenvalue i,

while V− is the distribution of eigenspaces for eigenvalue −i. The characteristic polynomial for J has the
form (z2 + 1)n, whence dim(V+(x)) = dim(V−(x)) = n at every x ∈ M . Extend the metric h to TCM by
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assuming that
h(λX, μY ) = λμh(X,Y )

for all real vector fields X,Y ∈ C∞(TM) and complex functions λ, μ ∈ C∞(M), where μ stands for com-
plex conjugation. The condition h ◦ J = h implies that the distributions of V+ and V− are orthogonal in
the metric h. It follows that to every almost Hermitian structure there corresponds the pair of orthogo-
nal distributions of V+ and V−. Observe that these distributions can be regular or singular. Conversely,
if the bundle TCM is the direct sum of regular distributions of V+ and V− of rank n then this pair
of distributions defines the almost complex structure

J : J |V+ = i id, J |V− = −i id .

Since each real vector field X ∈ C∞(TM) is representable as

X = Z+ + Z−, Z+ ∈ C∞(V+), Z− ∈ C∞(V−),

the value of the almost complex structure J at a real vector field X is defined as follows:

JX = i(Z+ − Z−).

If a Riemannian metric h0 is chosen on M and an almost complex structure J does not preserve the
metric H0 then we can always construct a metric h = h0 + h0 ◦ J for which h ◦ J = h. Thus, defining
an almost Hermitian structure on a manifold M is equivalent to defining a Riemannian metric and a pair
of regular distributions of V+ and V− such that

TCM = V+ ⊕ V−, rank(V+) = rank(V−).

The Complex Frobenius Theorem and the definition of V+ and V− imply the following (see [8, Chapter 9]):

Proposition 2.1. An almost Hermitian structure on a real even-dimensional manifold M is Hermi-
tian if and only if the distributions of the eigenspaces V+ and V− are involutive.

Thus, for defining a Hermitian structure on a manifold M , it suffices to endow M with a Riemannian
metric and a pair of involutive regular distributions of the same rank whose direct sum is equal to TCM .

Let (Φ, g) be an almost para-Hermitian structure on a manifold M . As in the case of an almost
Hermitian structure, the tangent bundle TM can be split into a direct sum of real distributions D+

and D−; i.e., Φ|D+ = id and D−:Φ|D− = − id. The condition g ◦Φ = −g implies that D+ and D− are the
distributions of the maximal isotropic subspaces. Conversely, if M is endowed with a pseudo-Riemannian
metric g0 of signature (n, n) and a pair of regular distributions of D+ and D− such that

TM = D+ ⊕D−, rank(D+) = rank(D−) = n,

then D+ and D− define an almost paracomplex structure Φ for which they are the distributions of
eigenspaces with eigenvalues ±1. If the metric g0 does not satisfy the condition g0 ◦ Φ = −g0 then the
latter will be fulfilled for the metric g = g0−g0 ◦Φ, and we obtain a para-Hermitian structure (Φ, g). The
Real Frobenius Theorem and the definition of distributions D+ and D− imply the following (see [1]):

Proposition 2.2. An almost para-Hermitian structure on a real even-dimensional manifold M is
para-Hermitian if and only if the distributions of the eigenspaces D+ and D− are involutive.

Thus, for defining a para-Hermitian structure on a manifold M , it suffices to endow M with a pseudo-
Riemannian metric of signature (n, n) and a pair of involutive distributions of identical rank whose direct
sum is equal to TM .

Remark 2.3. Since using a partition of unity, on a paracompact manifold we can construct a Rie-
mannian metric (see [9]) or a pseudo-Riemannian metric, on a paracompact manifold M of dimension 2n,
for defining an almost Hermitian structure or para-Hermitian structure, it suffices to define some decom-
position of the complexified or real tangent bundle TM into the direct sum of distributions of rank n.
Likewise, for defining a Hermitian or a para-Hermitian structure on a paracompact manifold M , it suf-
fices to define some decomposition of the complexified of real tangent bundle TM into the direct sum
of involutive regular distributions of rank n.
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3. The Radical of a Multilinear Form

Suppose that M is a real manifold of class C∞ of dimension n ≥ 3, while p is a positive integer and Ω
is a p-linear nonzero form on M . Denote by IX Ω the (p− 1)-linear form on M obtained by substituting
a vector field X for the first argument in the multilinear form Ω. This (p− 1)-linear form is the interior
product of X and Ω.

Definition 3.1. If p ≥ 2 then the radical of a p-linear form Ω at x ∈ M is the vector space

radΩx = {v ∈ TxM : Iv Ωx = 0}.
For p = 1, the radical of a 1-form Ω is the radical of its exterior differential dΩ at x. The distribution
radΩ =

⋃
x∈M radΩx on M is the radical of the p-linear form Ω on M .

A p-linear form Ω on a manifold M is regular if radΩ is a regular distribution on M .

Observe that the radical of the bilinear form Ω is sometimes called the kernel of Ω. The radical and
kernel of a bilinear form are the same, but for 1-forms they are differ.

We say that a skew-symmetric p-form Ω, with p ≥ 2, is nondegenerate on a manifoldM if radΩ = {0}.
For a nondegenerate skew-symmetric 2-form Ω on a manifold M of dimension 2n, we obtain the familiar
property: Ωn �= 0 on M , and for a nondegenerate 1-form η on a manifold M of dimension 2n + 1, we
get that (dη)n ∧ η �= 0 on M (a contact 1-form). Definition 3.1 implies immediately that on a manifold
of dimension 2, any regular nonzero skew-symmetric 2-form is nondegenerate. Note that for a regu-
lar skew-symmetric multilinear form Ω with nontrivial radical, the restriction of Ω to any distribution
complementary to radΩ is always nondegenerate.

We now obtain some important properties for the rank of the radical of a regular skew-symmetric
p-form.

Proposition 3.2. Let M be a paracompact manifold of dimension n ≥ 3. Then rank(radΩ) ≤ n−p
for every nonzero regular skew-symmetric p-form Ω on M .

Proof. Since a paracompact manifold admits a Riemannian metric (see Remark 2.3), the distribu-
tion radΩ on M has the orthogonal complement D. Denote by X0 the projection of the vector field X
to radΩ and designate as X ′ the projection of X to D. Given X1, . . . , Xp ∈ C∞(TM), we have

Ω(X1, . . . , Xp) = Ω
(
X0

1 +X ′
1, . . . , X

0
p +X ′

p

)
= Ω(X ′

1, . . . , X
′
p).

Since every collection of m vectors in a vector space of dimension less that m is always linearly dependent,
for every x ∈ M we obtain Ωx(X

′
1, . . . , X

′
p) = 0 for p > m = n−rank(radΩ). Since Ω is a regular nonzero

p-form; therefore, rank(radΩ) ≤ n− p. �
Denote the Lie bracket of vector fields X,Y on a manifold M by [X,Y ].

Proposition 3.3. The radical of any closed regular skew-symmetric p-form, p ≥ 2, on a manifold M
is an involutive regular distribution on M .

Proof. Use the definition of the exterior derivative of a skew-symmetric p-form Ω. Given X1, . . . ,
Xp+1 ∈ C∞(TM), we infer

(p+ 1)! dΩ(X1, . . . , Xp+1) =
1

(p+ 1)!

(p+1∑

k=1

(−1)k−1Xk(Ω(X1, . . . , X̂k, . . . , Xp+1))

+
∑

k<l

(−1)k+lΩ([Xk, Xl], . . . , X̂k, . . . , X̂l, . . . , Xp+1)

)

, (1)

where X̂k stands for the omission of Xk. Definition 3.1 implies for all X1, X2 ∈ C∞(radΩ) and

X3, . . . , Xp+1 ∈ C∞(TM) that Xk(Ω(X1, . . . , X̂k, . . . , Xp+1)) = 0 for each index k and

Ω([Xk, Xl], . . . , X̂k, . . . , X̂l, . . . , Xp+1) = 0
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for k �= 1 and l �= 2. Since dΩ = 0, we have

Ω([X1, X2], X3, . . . , Xp+1) = 0,

i.e., [X1, X2] ∈ C∞(radΩ). �
The following example shows that the converse to Proposition 3.3 fails.

Example 3.4. Consider the compact manifold M = S6 × Tn, where S6 is the six-dimensional
sphere, and Tn is the flat n-dimensional torus. The sphere S6 admits an almost Hermitian structure with
fundamental 2-form Ω0 (see [6]). Since there are no symplectic structures on the six-dimensional sphere
and the fundamental 2-form of an almost Hermitian structure is always nondegenerate, Ω0 is a nonclosed
2-form on S6. Extend the 2-form Ω0 to some skew-symmetric 2-form Ω on M by setting

Ω(X,Y )|X,Y ∈T (S6) = Ω0(X,Y ), Ω(X,Y )|X∈T (S6),Y ∈T (Tn) = 0, Ω(X,Y )|X,Y ∈T (Tn) = 0.

We obtain radΩ = T (Tn), dΩ �= 0, and radΩ is an involutive distribution on M .

It was shown in [4] that, for every regular degenerate skew-symmetric 2-form Ω on a manifold M
of an arbitrary dimension, each distribution on M complementary to radΩ has even rank and the re-
striction of the 2-form Ω to this distribution is nondegenerate. By the Frobenius Theorem, an involutive
distribution on the manifold M is integrable and hence M is a foliation with integral submanifolds as
the leaves. Proposition 3.3 yields

Corollary 3.5. Let M be a real manifold of dimension n ≥ 3 and let Ω be a regular closed skew-
symmetric 2-form on M with radical of rank r ≥ 1. Then M is a foliation with leaves of dimension r and
any submanifold in M transversal to the leaves is a symplectic submanifold of dimension n− r.

4. Degenerate Skew-Symmetric Multilinear Forms and Hermitian Structures

We will describe the relationship between Hermitian and para-Hermitian structures and closed regular
skew-symmetric forms.

Let M be a paracompact real manifold of dimension 2n. By Remark 2.3, for defining an almost
Hermitian structure on M , it suffices to define a Riemannian metric on M and a decomposition of the
complexified tangent bundle TCM = TM ⊗C into the direct sum of regular distributions of complexified
tangent subspaces of rank n; and for defining an almost para-Hermitian structure on M , it suffices
to define on M a pseudo-Riemannian metric of signature (n, n) and a decomposition of the tangent
bundle into a direct sum of regular distributions of tangent subspaces of rank n. If these distributions
on M are involutive then we obtain a Hermitian structure or a para-Hermitian structure on M . We
will refer as the complexification of a skew-symmetric real p-form Ω on M to the extension of Ω to the
complexified tangent bundle TCM . Refer as a complex skew-symmetric p-form on a real manifold M
to a skew-symmetric p-form acting on the sections of the complexified tangent bundle TCM .

Proposition 4.1. Let M be a real paracompact manifold of dimension 2n.
1. Each regular skew-symmetric real n-form on M with radical of rank n generates an almost para-

Hermitian structure on M , while each regular complex n-form on M generates an almost Hermitian
structure on M .

2. Each regular closed skew-symmetric real n-form on M with radical of rank n generates a para-
Hermitian structure on M , while each regular closed skew-symmetric complex n-form on M generates
a Hermitian structure on M .

Proof. Let Ω be a complex regular skew-symmetric n-form on M with radical of rank n. Since
a paracompact manifold always has a Riemannian metric, choose a Riemannian metric h and extend it
to TCM . Denoting by D the orthogonal complement to the distribution radΩ with respect to h, we have

TCM = D ⊕ radΩ, rank(D) = rank(radΩ) = n.
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Defining the almost complex structure and the Riemannian metric as in Section 2, we obtain an almost
Hermitian structure on M . If the n-form Ω is closed, then Proposition 3.3 implies that radΩ is involutive.
Without loss of generality, we may assume that radΩ is a distribution of vector fields of type (1,0). Since
the involutivity of a distribution of vector fields of type (1,0) is equivalent to the integrability of the
almost Hermitian structure (see [8, Chapter 9]), we obtain the second part of items 1 and 2.

Since on a paracompact manifold of dimension 2n, there always exists a pseudo-Riemannian metric
of signature (n, n), we similarly obtain the first part of items 1 and 2. �

We now prove the converse of Proposition 4.1:

Theorem 4.2. Let M be a paracompact real manifold of dimension 2n. Each almost Hermitian
structure on M defined by a pair of regular distributions of V+, V− ⊂ TCM of rank n generates a complex
regular n-form onM with radical V+ which is closed if the structure is Hermitian; and each para-Hermitian
structure on M defined by a pair of real regular distributions of D+ and D− of rank n generates a real
regular n-form with radical D+ on M which is closed if the structure is para-Hermitian.

Proof. Identify the real space R2n with the complex space Cn. If M admits an almost Hermitian
structure then for M there exists an open covering {U}α∈A, where Uα is an open set in M diffeomorphic
to an open ball in Cn. Let V+, V− ⊂ TCM be the distributions of eigenspaces with eigenvalues i and −i
respectively. On every open set Uα there exists a collection of linearly independent complex 1-form
ξα1 , . . . , ξ

α
n so that

V+|Uα =
n⋂

k=1

ker ξαk .

Since the kernel of a nonzero linear functional has codimension 1, in C∞(V−|Uα) there exist sections
Zα
1 , . . . , Z

α
n so that ξαk (Z

α
k ) = 1 and ξαl (Z

α
k ) = 0 for k �= l. It follows that

ξα1 ∧ · · · ∧ ξαn
(
Zα
1 , . . . , Z

α
n

)
=

1

n!
.

The Partition-of-Unity Theorem implies that for each index α ∈ A there exists a function φα ∈ C∞(M)
so that 0 < φα(x) ≤ 1 for all x ∈ Uα, φα(x) = 1 on some closed subset V α ⊂ Uα, and φα(x) = 0 for
all x ∈ M \ Uα. Then Ωα = φαξ

α
1 ∧ · · · ∧ ξαn be a skew-symmetric n-form on Uα with radical V+

∣
∣
Uα

.

Put Ω =
∑

α∈AΩα. Since M is paracompact, every x ∈ M belongs to finitely many intersections of Uα,
and hence the sum is finite at every point and Ω is a skew-symmetric n-form on M . Observe that
rad(ω + θ) = V+ for all p-forms ω and θ so that radω = rad θ = V+. Since radΩα = radΩβ = V+|Uα∩Uβ

,
for all α and β so that Uα ∩ Uβ �= ∅, we have radΩ = V+.

For a Hermitian structure, V+ is an involutive distribution of holomorphic vector fields and V− is
an involutive antiholomorphic distributions of vector fields. Using these facts and equality (1) of Section 3,
we obtain radΩ ⊂ rad(dΩ). If dΩ �= 0 then rank(rad(dΩ)) ≥ n. On the other hand, Proposition 3.2
implies that rank(rad(dΩ)) ≤ n − 1. Consequently, dΩ = 0. The property dΩ = 0 can also be proved
using the fact that for every x ∈ M there exists a closed neighborhood V α so that Ω|V α

= ξα1 ∧ · · · ∧ ξαn .
This is because the local 1-forms ξα1 , . . . , ξ

α
n can always be chosen exact.

Likewise, for an almost para-Hermitian structure on M , we can construct a real regular n-form with
radical D+ which will be closed for a para-Hermitian structure. �

Proposition 4.1 and Theorem 4.2 yield

Corollary 4.3. LetM be a paracompact real manifold of dimension 2n. ThenM admits a Hermitian
structure with regular distributions of eigenspaces if and only if M admits a complex regular skew-
symmetric closed n-form with radical of rank n; M admits a para-Hermitian structure with regular
distributions of eigenspaces if and only if M admits a real regular skew-symmetric closed n-form with
radical of rank n.

The following result makes it possible to construct an example of a Hermitian structure or a para-
Hermitian structure obtained by a regular skew-symmetric n-form with radical of rank n.
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Proposition 4.4. Let M be a paracompact real manifold of dimension 2n. If M has a global
closed n-coframe ξ1, . . . , ξn such that dξk = 0 for all k ≤ n then M admits a Hermitian structure and
a para-Hermitian structure.

Proof. Consider the global skew-symmetric n-form Ω = ξ1 ∧ · · · ∧ ξn on M . It is easy to see
that dΩ = 0 and radΩ =

⋂n
k=1 ker ξk. From Proposition 4.1 we obtain that the real n-form Ω defines

a para-Hermitian structure on M .
Remark 2.3 implies that on a paracompact manifoldM , there exists a Riemannian metric. Extend the

1-forms ξ1, . . . , ξn to TCM by assuming that ξk(λX) = λξk(X), k = 1, 2, . . . , n, for every X ∈ C∞(TM)
and every complex number λ. It is easy to see that ξ1, . . . , ξn are complexified closed 1-forms on M .
Then the extension of the n-form Ω to TCM is a complexified closed n-form with radical of rank n, which
by Proposition 4.1 defines a Hermitian structure on M . �

On every real Lie group of dimension 2n with the first Betti number ≥ n, there exists a left-invariant
closed n-coframe, and so we obtain

Corollary 4.5. Suppose that G is a real Lie group of dimension 2n, b1(G) is the first Betti number
of G, and b1(G) ≥ n. Then G admits a left-invariant Hermitian structure and a left-invariant para-
Hermitian structure.

Example 4.6. Suppose that G is a real Lie group of dimension 2n, let g be the Lie algebra of G, while
g′ = [g, g] is the first derived ideal in g and dim(g′) = n. In the Lie algebra g, choose a complement p to g′.
Using equality (1) in Section 3 for left-invariant 1-forms, we conclude that dα = 0 for every left-invariant
1-form α ∈ p∗. Then there exists a left-invariant closed coframe ξ1, . . . , ξn in p∗. From Proposition 4.4
we conclude that the left-invariant skew-symmetric n-form Ω = ξ1 ∧ · · · ∧ ξn defines some left-invariant
para-Hermitian structure on M and its extension to g ⊗ C defines a left-invariant Hermitian structure
on G.

Let Adg be the adjoint of an element g ∈ G in g. It follows from Proposition 3.3 that the distribution
radΩ is involutive. Since Adg is an isomorphism of g with respect to the Lie bracket; Adg(radΩ)
for g ∈ G is a left-invariant involutive distribution on G of rank n. Since the n-form Ω generates a left-
invariant para-Hermitian structure on G and its complexification defines a Hermitian structure on G
for the distribution radΩ, there exists an involutive complement D in g or in g ⊗ C. Then Adg(D) is
a left-invariant involutive distribution on G of rank n complementary to Adg(radΩ), and we obtain the
left-invariant para-Hermitian or Hermitian structure generated by g ∈ G. Let H be a subgroup in G so
that Adh(radΩ) = radΩ for every h ∈ H. Thus, the homogeneous space G/H parametrizes the family
of left-invariant para-Hermitian or Hermitian structures obtained as the orbit of the adjoint action of G
on the radical of the n-form Ω or as the complexification of the adjoint action of G on the radical of the
complexification of the n-form Ω.

Generalizing Example 4.6 for an arbitrary Lie group, we arrive at

Proposition 4.7. Let G be a real Lie group of dimension 2n. Each closed left-invariant skew-
symmetric n-form Ω on G with radical of rank n generates a family of left-invariant para-Hermitian
structures on G parametrized by the points of the orbit of the adjoint action of G on the radical of
the n-form Ω, and the complexification of the n-form Ω generates a family of left-invariant Hermitian
structures on G parametrized by the points of the orbit of the complexified adjoint action of G on the
radical of the complexification of the n-form Ω.

Let Λn(M) be the bundle of skew-symmetric n-forms over a manifold M and let Λn
C(M) be the

bundle of complex skew-symmetric n-forms over M . Theorem 4.2 implies that every para-Hermitian
structure on a manifold M generates an everywhere no vanishing global section of the bundle Λn(M),
and every Hermitian structure on M is an everywhere no vanishing global section of Λn

C(M). Let e(E)
be the Euler class of a vector bundle E. If E admits an everywhere no vanishing global section then
e(E) = 0 (see [10]). Thus, we obtain the following necessary condition for the existence of a Hermitian
structure or a para-Hermitian structure on a manifold:
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Proposition 4.8. Let M be a real paracompact manifold of dimension 2n. If M admits an al-
most para-Hermitian structure then e(Λn(M)) = 0; if M admits an almost Hermitian structure then
e
(
Λn

C(M)
)
= 0.

Let M be a compact boundaryless manifold and let χ(M) be the Euler characteristic of M . Since
χ(M) =

∫
M e(M), where e(M) is the Euler class of the tangent bundle TM (see [10]), we obtain

Corollary 4.9. Suppose that M is a real paracompact manifold of dimension 2n and the bun-
dles Λn(M) and Λn

C(M) are compact boundaryless manifolds. If χ(Λn(M)) > 0 then M admits no para-
Hermitian structures; if χ

(
Λn

C(M)
)
> 0 then M admits no Hermitian structures.

Proposition 4.10. If a real paracompact manifold M admits an almost Hermitian structure with
distributions of eigenspaces D+ and D− then M and the vector bundles D+ and D− are orientable.

Proof. Since M admits an almost para-Hermitian structure, M must be of dimension 2n. The pair
of distributions of tangent subspaces D+ and D− of rank n defines a para-Hermitian structure on M
up to multiplication by −1; Theorem 4.2 implies that on M there are real skew-symmetric n-forms Ω+

and Ω− such that radΩ+ = D− and radΩ− = D+. Since the restriction of the n-form Ω+ to the sections
of D+ and the restriction of the n-form Ω− to the sections of D− are nondegenerate, these n-forms define
a continuous choice of orientation in the fibers of D+ and D− respectively, and the skew-symmetric real
2n-form μ = Ω+ ∧ Ω− is a volume form on M . Since on a paracompact manifold, there always exists
a Riemannian metric, the bundle D+ admits a Levi-Civita connection Q : T (D+) = Q⊕D+. The lifting
of the 2n-form μ to the sections of Q and the continuous choice of orientation for Ω+ in the fibers of D+

generate a volume form on the space of the bundle D+, i.e., D+ is an orientable vector bundle. Likewise,
we conclude that also D− is an orientable vector bundle. �

Let is demonstrate how, using degenerate skew-symmetric n-forms, we can obtain some families
of Hermitian and para-Hermitian structures. Let Ω be a real or complex regular skew-symmetric n-form
with radical of rank n on a real manifold M of dimension 2n. Denote by A the group of all smooth
automorphisms of M . The action of this group at the n-form Ω is defined in the standard manner:

a(Ω) = a∗Ω = Ω ◦ da, a ∈ A,

where da is the differential of a. Denote by AΩ the subset

AΩ = {a ∈ A : da(radΩx) = radΩa(x) ∀x ∈ M}.
It is easy to check that AΩ is a subgroup in A. If dΩ = 0 then equality (1) in Section 3 and the properties
of the differential of a mapping imply that d(a∗Ω) = 0 for all a ∈ A. Proposition 4.1 implies that a∗Ω
generates a Hermitian structure or a para-Hermitian structure on M for every a ∈ A /AΩ. Thus, we
come to

Proposition 4.11. LetM be a real paracompact manifold of dimension 2n. If there exists a complex
(real) closed skew-symmetric regular n-form with radical of rank n on M then M admits a family
of Hermitian (para-Hermitian) structures parametrized by the elements of the orbit of the action of the
group of smooth automorphisms of M on the distribution radΩ.

Let M be a real paracompact manifold of dimension 2n. In [11], the relationship is revealed between
complex structures on M and Dirac structures in the bundle TCM ⊕ T ∗

CM . In [12], the relationship
is described between paracomplex structures on M and Dirac structures on TM ⊕ T ∗M . Each closed
skew-symmetric 2-form B on M generates a transformation of the B-field on M which maps the Dirac
structure to another Dirac structure and hence generates a complex structure or a paracomplex structure
on M (see [11, 12]). Proposition 4.1 and Theorem 4.2 imply

Proposition 4.12. Let M be a real paracompact manifold of dimension 2n. If M admits a complex
(real) regular closed skew-symmetric n-form with radical of rank n then M admits a family of Hermitian
(para-Hermitian) structures parametrized by the elements of the set of all complex (real) closed skew-
symmetric 2-forms on M .
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Remark 4.13. The families of Hermitian (para-Hermitian) structures of Propositions 4.11 and 4.12
may fail to coincide but always have nonempty intersection.

5. Hermitian and Para-Hermitian Structures on the Six-Dimensional Sphere

Consider the six-dimensional sphere S6 in the seven-dimensional Euclidean space R7 which can be
identified with the space of imaginary octonions. Given q1, q2 ∈ R7, we have the skew-symmetric bilinear
operation

b(q1, q2) = Im(q1q2),

where Im(q) is the imaginary part of an octonion q, while q stands for the conjugation of q. Since in R7,
there exists a standard Euclidean metric, and the restriction of this metric to S6 is a Riemannian metric
on S6, each almost complex structure on S6 generates an almost Hermitian structure on S6 (see Section 2).
Likewise, since the six-dimensional sphere is a compact manifold, by Remark 2.3, each almost paracomplex
structure on S6 generates an almost para-Hermitian structure on S6. Let G2 be the group of orthogonal
symmetries of the skew-symmetric form b, and let SU(3) be the group of complex Hermitian matrices
with determinant 1. The sphere S6 can be regarded as the homogeneous space G2/ SU(3). An almost
complex (paracomplex) structure J on S6 is G2-invariant if J ◦ dg = dg ◦J for every g ∈ G2, where dg is
the differential of g. It is known that S6 admits a nonintegrable G2-invariant almost complex structure J0
(see [6]). The distributions of V+ and V− of Section 2 for J0 are G2-invariant distributions of complex
rank 3 and

V+ = {X − iJ0X : X ∈ C∞(T (S6))}, V− = {Y + iJ0Y : Y ∈ C∞(T (S6))}.
Let Ω0 be the fundamental 2-form of the almost Hermitian structure (J0, h0), where h0 is an almost
Hermitian metric on S6. Since the six-dimensional sphere does not admit symplectic structures and Ω0

is a nondegenerate 2-form of type (1, 1), it follows that dΩ0 is a regular skew-symmetric 3-form on S6

with zero radical. On the six-dimensional sphere, every real vector field vanishes at least at one point
since the Euler characteristic of the six-dimensional sphere is equal to 2.

Proposition 5.1. On the even-dimensional sphere S2n, there exists a section of the bundle TC(S
2n)

different from zero at all points of the sphere.

Proof. Let p and q be two poles of the sphere S2n, while U = S2n \ p and V = S2n \ q. The stereo-
graphic projection centered at q is a diffeomorphism φ : U → R2n, and the stereographic projection cen-
tered at p is a diffeomorphism ψ : V → R2n. On R2n, consider the vector field S(x) = (s1(x), . . . , S2n(x)),

where sk(x) = exp(−k|x|2), with |x| =
√
x21 + · · ·+ x22n and k = 1, 2, . . . , 2n. The vector field S makes

it possible to define some vector fields X,Y ∈ C∞(T (S2n)) on S2n such that X(x) = (dφ)−1S(φ(x))
for x ∈ U , while X(p) = 0 and Y (x) = (dψ)−1S(ψ(x)) for x ∈ V and Y (q) = 0. Observe that the vector
field X is continuous at p, the vector field Y is continuous at q, and X|U �= 0, Y |V �= 0. At each x ∈ S2n,
the complex section Z = X + iY , with i =

√
−1, of the bundle TC(S

2n) is an everywhere no vanishing
global section on S2n. �

Extend the Hermitian metric h0 to a Hermitian inner product on the sections of the bundle TC(S
6).

Since this inner product defines an isomorphism between the sections of TC(S
6) and complex 1-forms,

there exists an everywhere no vanishing complex 1-form η = IZ h0 on S6, where Z is the complex section
of Proposition 5.1. The proof of Proposition 5.1 implies that the complex section Z = X + iY cannot
be a section of type (1,0) or of type (0,1) because Y �= J0X. We conclude that Z and J0Z are complex
sections of TC(S

6) on S6 linear independent at every point. We put

Ω1 = η, ω2 = IJ0Z h0, ω3 = IZ(IJ0Z dΩ0).

The construction of the 1-form ω3 implies that Z, J0Z ∈ kerω3, and hence the complex 1-forms ω1, ω2,
and ω3 are linearly independent at every point in S6 and Ω = ω1 ∧ ω2 ∧ ω3 is a regular skew-symmetric
complex 3-form on S6 so that

radΩ = kerω1 ∩ kerω2 ∩ kerω3

has rank 3. We obtain
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Proposition 5.2. On the six-dimensional sphere S6, there is a family of complex skew-symmetric
regular 3-forms with radical of rank 3 parametrized by the elements of everywhere no vanishing complex
1-forms on S6.

Propositions 4.1 and 5.2 imply

Corollary 5.3. The six-dimensional sphere S6 admits a family of almost Hermitian structures
parametrized by everywhere no vanishing complex 1-forms on S6.

Using the above method for constructing a skew-symmetric regular complex 3-form with radical
of rank 3 from a complex 1-form on S6 and Corollary 5.3, we can construct the functional kor : ω �→ ‖dθω‖,
where ‖dθω‖ is the norm of the differential of the skew-symmetric 3-form θω constructed from an every-
where no vanishing 1-form ω on S6. Proposition 4.1 and Theorem 4.2 imply that the almost Hermitian
structure corresponding to a 3-form θω is integrable if and only if ω is a zero of the functional kor. We
come to

Theorem 5.4. Suppose that ω is an everywhere no vanishing complex 1-form on the six-dimensional
sphere S6. Suppose further that θω is the skew-symmetric regular complex 3-form on S6 constructed
from this form, and (Jω, h) is the almost Hermitian structure on S6 corresponding to the 1-form ω. The
following are equivalent:

(1) the almost complex structure Jω is integrable;
(2) the 3-form θω is closed;
(3) ω is a zero of the functional kor.

As we see from Theorem 5.4, for obtaining a Hermitian structure on S6, it suffices to construct
a closed complex regular skew-symmetric 3-form with radical of rank 3 on S6. As was shown above, each
everywhere no vanishing complex 1-form ω on S6 generates a complex 3-form with radical of rank 3:

θω = ω1 ∧ ω2 ∧ ω3, ω1 = ω.

The condition dθω = 0 gives that this 3-form generates a Hermitian structure on S6. By now there are no
available particular examples of such a closed 3-form on S6. Here we can only give sufficient conditions
for this form to exist on S6.

Proposition 5.5. Suppose the fulfillment of one of the following conditions on S6:
(1) there exists a global complex closed 3-coframe on S6;
(2) there exist smooth complex functions f1, f2, and f3 on S6 whose differentials are linearly inde-

pendent at every point of S6;
(3) there exists a global complex 3-coframe ω1, ω2, ω3 on S6 so that dωk ∧ ω1 ∧ ω2 ∧ ω3 = 0, with

k = 1, 2, 3.
Then S6 admits a Hermitian structure.

Remark 5.6. Proposition 4.11 implies that if there exists a complex regular skew-symmetric closed
3-form with radical of rank 3 on S6 then it generates a family of Hermitian structures on S6 parametrized
by the elements of the orbit of the action of the group of smooth automorphisms of S6 on the radical
of this 3-form.

For real skew-symmetric 3-forms on S6, we obtain

Theorem 5.7. The six-dimensional sphere admits no real skew-symmetric regular 3-forms with
radical of rank 3.

Proof. Suppose that S6 admits a skew-symmetric regular real 3-form Ω with radical of rank 3. Let
D+ = radΩ and let D− be the orthogonal complement in the Riemannian metric on S6 to the distribution
of tangent subspaces D+. Since S6 is a compact orientable manifold, Proposition 4.10 implies that the
distributions of tangent subspaces D+ and D− are orientable. Let e(E) be the Euler class of a vector
bundle E. Since the Euler class of every vector bundle of odd rank is zero, we have

e(S6) = e(D+)  e(D−) = 0.
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But e(S6) �= 0 since the Euler characteristic of the six-dimensional sphere is equal to 2. Thus, S6 admits
no real regular skew-symmetric 3-forms with radical of rank 3. �

From Theorems 4.2 and 5.7 we obtain

Corollary 5.8. The six-dimensional sphere admits no almost paracomplex structures.

6. Hermitian and Para-Hermitian Structures on Six-Dimensional Manifolds

Let us address the existence of Hermitian and para-Hermitian structures on some six-dimensional
manifolds and also obtain families of Hermitian and para-Hermitian structures on these manifolds. Note
that in [6], almost complex structures on six-dimensional products of spheres were described with the
use of octonion multiplication and it was proved that all these almost complex structures are noninte-
grable. Here we do not use octonion multiplication and obtain Hermitian structures on using the method
of Section 4.

Let Sn be the real sphere in the Euclidean space Rn+1 which is a compact simply-connected manifold
for every n ≥ 1. The compact manifold S3 × S3 can be embedded in the complex space C4. Therefore,
on S3×S3, there exists a Hermitian structure induced from C4. Also, since T (S3×S3) = T (S3)⊕T (S3),
this decomposition defines a para-Hermitian structure on S3 × S3 (see Section 2). Propositions 4.11
and 4.12 imply

Corollary 6.1. The direct product of three-dimensional spheres S3×S3 admits a family of Hermitian
(para-Hermitian) structures parametrized by the elements of the orbit of the action of the group of smooth
automorphisms of S3 × S3 on the radical of the complex (real) regular closed skew-symmetric 3-form
on S3×S3 with radical of rank 3. Moreover, each complex (real) closed skew-symmetric 2-form on S3×S3

generates a Hermitian (para-Hermitian) structure on S3 × S3.

Prove that S2 × S4 admits a family of Hermitian structures but does not admit a family of para-
Hermitian structures.

Theorem 6.2. On the manifold S2×S4, there exists a family of Hermitian structures parametrized
by the set of all complex closed skew-symmetric 2-forms on S2 × S4.

Proof. Proposition 5.1 implies that on S4 there exists an everywhere no vanishing complex sec-
tion Z of the bundle TC(S

4). A complex section Z generates a complex distribution of rank 1 on S4

since Z �= 0 on S4. The distribution TC(S
2)⊕ CZ is an involutive distribution of rank 3 in TC(S

2 × S4).
This distribution and its orthogonal complement in a fixed Riemannian metric make it possible to con-
struct a complex structure on S2 × S4 as in Section 2. From Theorem 4.2 and Proposition 4.12 we
conclude that S2×S4 admits a family of Hermitian structures parametrized by the elements of the space∧2 T ∗

C(S
2 × S4). �

Theorem 6.3. The direct product of the two-dimensional sphere S2 and the four-dimensional
sphere S4 does not admit almost para-Hermitian structures.

Proof. Suppose that on S2×S4 there exists an almost para-Hermitian structure. By Theorem 4.2,
this almost para-Hermitian structure generates a real regular skew-symmetric 3-form on S2 × S4 with
radical of rank 3. As in the proof of Theorem 5.7, we infer that the Euler characteristic of the direct
product S2 × S4 is equal to zero. But the Euler characteristic of this direct product of spheres is equal
to four. Consequently, there are no almost para-Hermitian structures on S2 × S4. �

Since on every compact manifold with positive Euler characteristic, any vector field vanishes at some
point (see [10]), generalizing Theorem 6.3, we obtain

Theorem 6.4. Let M be a real compact orientable six-dimensional boundaryless manifold with
positive Euler characteristic. Then M admits no para-Hermitian structures.
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Since the product of spheres S5×S1 can be embedded in the complex space C4, this manifold admits
a Hermitian structure. By Theorem 4.2, this Hermitian structure generates a regular complex closed
skew-symmetric 3-form on S5 × S1 with radical of rank 3. Propositions 4.11 and 4.12 yield

Corollary 6.5. The direct product of the fifth-dimensional sphere S5 and the circle S1 admits
a family of Hermitian structures parametrized by the elements of the orbit of the action of the group of
smooth automorphisms of S5 × S1 on the radical of the complex closed regular skew-symmetric 3-form
on S5 × S1 with radical of rank 3. Moreover, each complex closed skew-symmetric 2-form on S5 × S1

generates a Hermitian structure on S5 × S1.

Theorem 6.6. The direct product of the fifth-dimensional sphere S5 and the circle S1 admits
a family of para-Hermitian structures parametrized by the elements of the orbit of the action of the
group of smooth automorphisms of S5×S1 on the radical of a real closed regular skew-symmetric 3-form
on S5×S1 with radical of rank 3. Moreover, each real closed skew-symmetric 2-form on S5×S1 generates
a para-Hermitian structure on S5 × S1.

Proof. We will regard the sphere S5 as a surface in the complex space C3:

S5 = {(z1, z2, z3) ∈ C3 : |z1|2 + |z2|2 + |z3|2 = 1}.
Let T 3 = S1×S1×S1 be the three-dimensional torus embedded in C3. Define the action of the torus T 3

at z ∈ S5 as follows:

a(z) = (a1, z1, a2z2, a3, z3), z = (z1, z2, z3) ∈ S5, a = (a1, a2, a3) ∈ S1 × S1 × S1.

Thus, through every z ∈ S5, there passes a real three-dimensional submanifold T 3(z). On S5, introduce
the distribution of tangent subspaces D; i.e., D(z) = Tz(T

3(z)) for all z ∈ S5. Since S5 is a compact
manifold, for every z ∈ S5 there exists an open neighborhood U : D|U = T (T 3(z))|U . By the Frobenius
Theorem, we see thatD is a regular involutive distribution of rank 3. Theorem 4.2 implies that on S5×S1,
there exists a real closed regular skew-symmetric 3-form with radical D. Now the theorem follows from
Propositions 4.11 and 4.12. �

Let M be a real manifold of dimension 4 and let Λ2(M) be the bundle of real skew-symmetric
2-forms over M . Λ2(M) is a real paracompact manifold of dimension 6. Let � be the Hodge operator
on the set of skew-symmetric multilinear forms on M . The properties of the Hodge operator imply that
if Ω ∈ Λ2(M) then �Ω ∈ Λ2(M), �2 = id, and the operator � has exactly two eigenvalues ±1. Then
the tangent bundle T (Λ2(M)) is the Whitney sum of two distributions of tangent subspaces of rank 3
T (Λ2

+(M)) and T (Λ2
−(M)), where

Λ2
+(M) = {Ω ∈ Λ2(M) : �Ω = Ω}, Λ2

−(M) = {Ω ∈ Λ2(M) : �Ω = −Ω}.
The distributions T (Λ2

+(M)) and T (Λ2
−(M)) are involutive since they are the tangent bundles for the inte-

gral submanifolds Λ2
+(M) and Λ2(M). As was shown in Section 2, this pair of distributions defines a para-

Hermitian structure on Λ2(M), and the pair of complexified distributions T (Λ2
+(M))⊗C, T (Λ2

−(M))⊗C
defines a Hermitian structure on Λ2(M). Applying Theorem 4.2 and Propositions 4.11 and 4.12, we
obtain

Proposition 6.7. The bundle Λ2(M) of real skew-symmetric 2-forms over a four-dimensional real
manifold M admits a family of Hermitian (para-Hermitian) structures parametrized by the elements of
the orbit of the action of the group of smooth automorphisms of the manifold Λ2(M) on the radical
of a complex (real) closed regular skew-symmetric 3-form on λ2(M) with radical of rank 3. Moreover,
each complex (real) closed skew-symmetric 2-form on Λ2(M) generates a Hermitian (para-Hermitian)
structure on Λ2(M).

Remark 6.8. LetM be a real manifold of dimension 4 and let Λ2
C(M) be the bundle of complex skew-

symmetric 2-forms over M . Propositions 4.8 and 6.7 imply that the vector bundles Λ2(M) and Λ2
C(M)

admit an everywhere no vanishing global section, and have zero Euler class.
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Observe that instead of the bundle of all skew-symmetric 2-forms over a four-dimensional manifoldM ,
we can consider the subbundle of only fundamental 2-forms for Hermitian and para-Hermitian structures
in the fibers of the tangent bundle TM with fixed metric, in particular, for the twistor bundle.
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